Skip to main content
Log in

On the Room-Temperature Mechanical Properties of an Ion-Irradiated TiZrNbHfTa Refractory High Entropy Alloy

  • Advanced Characterization and Testing of Irradiated Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Refractory high-entropy alloys (RHEAs) are potential candidate materials for use in next-generation nuclear reactors due to their excellent mechanical performance at high temperatures. Here, we investigate the microstructure and mechanical properties of the nanocrystalline RHEA TiZrNbHfTa before and after irradiation with He2+ ions to determine radiation-induced property changes. Using nanoindentation and in situ microtensile testing we find only small changes in hardness after irradiation but a significant increase in yield and ultimate tensile strength without loss in ductility. This is associated with radiation hardening and a shift from shear localization failure with smooth fracture surfaces to a fracture morphology consisting of fine dimples and intergranular failure characteristics. Overall, the material shows excellent damage-tolerant properties with good combinations of strength and ductility both prior to and after ion irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The indenter-induced plastic zone is estimated using Rplastic/dindent = 8, where Rplastic is the plastic zone radius and dindent is the indent depth.29

  2. It should be noted that our reported failure strains have been extracted from the DIC measurements of images taken intermittently and hence slightly underestimate the actual failure strain.

References

  1. K.L. Murty and I. Charit, J. Nucl. Mater. 383, 189 (2008).

    Article  Google Scholar 

  2. S.J. Zinkle and J.T. Busby, Mater. Today 12, 12 (2009).

    Article  Google Scholar 

  3. L.K. Mansur, A.F. Rowcliffe, R.K. Nanstad, S.J. Zinkle, W.R. Corwin, and R.E. Stoller, J. Nucl. Mater. 329–333, 166 (2004).

    Article  Google Scholar 

  4. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  5. E.P. George, D. Raabe, and R.O. Ritchie, Nat. Rev. Mater. (2019).

  6. D.B. Miracle and O.N. Senkov, Acta Mater. 122, 448 (2017).

    Article  Google Scholar 

  7. F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, and Y. Zhang, Phys. Rev. Lett. 116, 135504 (2016).

    Article  Google Scholar 

  8. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153 (2014).

    Article  Google Scholar 

  9. K.V.S. Thurston, B. Gludovatz, A. Hohenwarter, G. Laplanche, E.P. George, and R.O. Ritchie, Intermetallics 88, 65 (2017).

    Article  Google Scholar 

  10. K.V.S. Thurston, B. Gludovatz, Q. Yu, G. Laplanche, E.P. George, and R.O. Ritchie, J. Alloys Compd. 794, 525 (2019).

    Article  Google Scholar 

  11. O.N. Senkov, D.B. Miracle, K.J. Chaput, and J.-P. Couzinie, J. Mater. Res. 33, 3092 (2018).

    Article  Google Scholar 

  12. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, J. Alloys Compd. 509, 6043 (2011).

    Article  Google Scholar 

  13. J.P. Couzinié, G. Dirras, L. Perrière, T. Chauveau, E. Leroy, Y. Champion, and I. Guillot, Mater. Lett. 126, 285 (2014).

    Article  Google Scholar 

  14. B. Schuh, B. Völker, J. Todt, N. Schell, L. Perrière, J. Li, J.P. Couzinié, and A. Hohenwarter, Acta Mater. 142, 201 (2018).

    Article  Google Scholar 

  15. O.N. Senkov and S.L. Semiatin, J. Alloys Compd. 649, 1110 (2015).

    Article  Google Scholar 

  16. Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu, T. Wang, and T. Li, J. Mater. Sci. Technol. 35, 369 (2019).

    Article  Google Scholar 

  17. O. El-Atwani, N. Li, M. Li, A. Devaraj, J.K.S. Baldwin, M.M. Schneider, D. Sobieraj, J.S. Wróbel, D. Nguyen-Manh, S.A. Maloy, and E. Martinez, Sci. Adv. 5, eaav2002 (2019).

    Article  Google Scholar 

  18. J.F. Ziegler, M.D. Ziegler, and J.P. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268, 1818 (2010).

    Article  Google Scholar 

  19. A.Yu. Konobeyev, U. Fischer, Yu.A. Korovin, and S.P. Simakov, Nucl. Energy Technol. 3, 169 (2017).

    Article  Google Scholar 

  20. R. Abbaschian, L. Abbaschian, and R.E. Reed-Hill, Physical Metallurgy Principles, 4th ed. (Stamford, CT: Cengage Learning, 2009).

    Google Scholar 

  21. G. Laplanche, P. Gadaud, L. Perrière, I. Guillot, and J.P. Couzinié, J. Alloys Compd. 799, 538 (2019).

    Article  Google Scholar 

  22. J. Čížek, P. Haušild, M. Cieslar, O. Melikhova, T. Vlasák, M. Janeček, R. Král, P. Harcuba, F. Lukáč, J. Zýka, J. Málek, J. Moon, and H.S. Kim, J. Alloys Compd. 768, 924 (2018).

    Article  Google Scholar 

  23. N.D. Stepanov, N.Yu. Yurchenko, S.V. Zherebtsov, M.A. Tikhonovsky, and G.A. Salishchev, Mater. Lett. 211, 87 (2018).

    Article  Google Scholar 

  24. S.Y. Chen, Y. Tong, K.-K. Tseng, J.-W. Yeh, J.D. Poplawsky, J.G. Wen, M.C. Gao, G. Kim, W. Chen, Y. Ren, R. Feng, W.D. Li, and P.K. Liaw, Scr. Mater. 158, 50 (2019).

    Article  Google Scholar 

  25. J. Zýka, J. Málek, Z. Pala, I. Andršová, and J. Veselý, in 24th International Conference on Metallurgy and Materials (2015).

  26. T. Wei, H. Zhu, M. Ionescu, P. Dayal, J. Davis, D. Carr, R. Harrison, and L. Edwards, J. Nucl. Mater. 459, 284 (2015).

    Article  Google Scholar 

  27. D. Bhattacharyya, M.J. Demkowicz, Y.-Q. Wang, R.E. Baumer, M. Nastasi, and A. Misra, Microsc. Microanal. 18, 152 (2012).

    Article  Google Scholar 

  28. W.D. Nix and H. Gao, J. Mech. Phys. Solids 46, 411 (1998).

    Article  Google Scholar 

  29. M. Saleh, Z. Zaidi, M. Ionescu, C. Hurt, K. Short, J. Daniels, P. Munroe, L. Edwards, and D. Bhattacharyya, Int. J. Plast. 86, 151 (2016).

    Article  Google Scholar 

  30. P.L. Lane and P.J. Goodhew, Philos. Mag. A 48, 965 (1983).

    Article  Google Scholar 

  31. P. Dayal, D. Bhattacharyya, W.M. Mook, E.G. Fu, Y.-Q. Wang, D.G. Carr, O. Anderoglu, N.A. Mara, A. Misra, R.P. Harrison, and L. Edwards, J. Nucl. Mater. 438, 108 (2013).

    Article  Google Scholar 

  32. J.D. Hunn, E.H. Lee, T.S. Byun, and L.K. Mansur, J. Nucl. Mater. 282, 131 (2000).

    Article  Google Scholar 

  33. T. Wei, A. Xu, H. Zhu, M. Ionescu, and D. Bhattacharyya, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 409, 288 (2017).

    Article  Google Scholar 

  34. H. Zhang, C. Zhang, Y. Yang, Y. Meng, J. Jang, and A. Kimura, J. Nucl. Mater. 455, 349 (2014).

    Article  Google Scholar 

  35. M.A. Pouchon, J.C. Chen, and W. Hoffelner, Adv. Mater. Res. 59, 269 (2008).

    Article  Google Scholar 

  36. G. Sharma, P. Mukherjee, A. Chatterjee, N. Gayathri, A. Sarkar, and J.K. Chakravartty, Acta Mater. 61, 3257 (2013).

    Article  Google Scholar 

  37. M.A. Meyers, A. Mishra, and D.J. Benson, JOM 58, 41 (2006).

    Article  Google Scholar 

  38. P. Kumar, M. Kawasaki, and T.G. Langdon, J. Mater. Sci. 51, 7 (2016).

    Article  Google Scholar 

  39. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, J. Mater. Res. 17, 5 (2002).

    Article  Google Scholar 

  40. R. Valiev, Nat. Mater. 3, 511 (2004).

    Article  Google Scholar 

  41. T. Mungole, P. Kumar, M. Kawasaki, and T.G. Langdon, J. Mater. Sci. 50, 3549 (2015).

    Article  Google Scholar 

  42. T. Mungole, P. Kumar, M. Kawasaki, and T.G. Langdon, J. Mater. Res. 29, 2534 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Australian Nuclear Science & Technology Organisation (ANSTO) in providing expertise and facilities critical to this work—with special thanks to Colin Hobman for fabrication of testing equipment, Joel Davis for his support in preparing TEM specimens in the FIB, Ken Short for his help with nanoindentation, Tao Wei for performing the ion irradiation experiments, and the Centre for Accelerator Science for use of the 2 MV STAR tandem accelerator. In addition, the authors thank Microscopy Australia at the Electron Microscope Unit within the Mark Wainwright Analytical Centre at UNSW Sydney for technical assistance and use of their facilities. Additionally, M.M. would like to express gratitude for the financial support provided by the Australian Government [Award: Research Training Program (RTP) Scholarship] and by the Australian Institute of Nuclear Science and Engineering (AINSE) Limited [Award: Residential Student Scholarship (RSS)] who made this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Gludovatz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moschetti, M., Xu, A., Schuh, B. et al. On the Room-Temperature Mechanical Properties of an Ion-Irradiated TiZrNbHfTa Refractory High Entropy Alloy. JOM 72, 130–138 (2020). https://doi.org/10.1007/s11837-019-03861-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03861-6

Navigation