Skip to main content
Log in

Review: Overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures

  • 50th Anniversary
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ultrafine-grained (UFG) materials with grain sizes in the submicrometer or nanometer range may be prepared through the application of severe plastic deformation (SPD) to bulk coarse-grained solids. These materials generally exhibit high strength but only very limited ductility in low-temperature testing, thereby giving rise to the so-called paradox of strength and ductility. This paradox is examined and a new quantitative diagram is presented which permits the easy insertion of experimental data. It is shown that relatively simple procedures are available for achieving both high strength and high ductility in UFG materials including processing the material to a very high strain and/or applying a very short-term anneal immediately after the SPD processing. Significant evidence is now available demonstrating the occurrence of grain boundary sliding in these materials at low temperatures, where this is attributed to the presence of non-equilibrium grain boundaries and the occurrence of enhanced diffusion along these boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B 64:747–753

    Article  Google Scholar 

  2. Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 173:25–28

    Google Scholar 

  3. Valiev RZ, Kaibyshev OA, Kuznetsov RI, Musalimov RSh, Tsenev NK (1988) Low-temperature superplasticity of metallic materials. Dokl Akad Nauk SSSR 301:864–866

    Google Scholar 

  4. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189

    Article  Google Scholar 

  5. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58(4):33–39

    Article  Google Scholar 

  6. Alexander DJ (2007) New methods for severe plastic deformation processing. J Mater Eng Perform 16:360–374

    Article  Google Scholar 

  7. Zhu Y, Valiev RZ, Langdon TG, Tsuji N, Lu K (2010) Processing of nanostructured metals and alloys via plastic deformation. MRS Bull 35:977–981

    Article  Google Scholar 

  8. Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61:782–817

    Article  Google Scholar 

  9. Langdon TG (2013) Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater 61:7035–7059

    Article  Google Scholar 

  10. Huang Y, Langdon TG (2013) Advances in ultrafine-grained materials. Mater Today 16:85–93

    Article  Google Scholar 

  11. Kawasaki M, Langdon TG (2014) Producing ultrafine-grained materials through severe plastic deformation. Emerging Mater Res 3:252–260

    Article  Google Scholar 

  12. Zhilyaev AP, Kim BK, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Orientation imaging microscopy of ultrafine-grained nickel. Scripta Mater 46:575–580

    Article  Google Scholar 

  13. Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater 51:753–765

    Article  Google Scholar 

  14. Wongsa-Ngam J, Kawasaki M, Langdon TG (2013) A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. J Mater Sci 48:4653–4660. doi:10.1007/s10853-012-7072-0

    Article  Google Scholar 

  15. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981

    Article  Google Scholar 

  16. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979

    Article  Google Scholar 

  17. Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) Paradox of strength and ductility in metals processed by severe plastic deformation. J Mater Res 17:5–8

    Article  Google Scholar 

  18. Valiev R (2002) Materials science - Nanomaterial advantage. Nature 419:887–889

    Article  Google Scholar 

  19. Valiev R (2004) Nanostructuring of metals by severe plastic deformation for advanced properties. Nat Mater 3:511–516

    Article  Google Scholar 

  20. Jia D, Wang YM, Ramesh KT, Ma E, Zhu YT, Valiev RZ (2001) Deformation behavior and plastic instabilities of ultrafine-grained titanium. Appl Phys Lett 79:611–613

    Article  Google Scholar 

  21. Wang YM, Ma E (2004) Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater Sci Eng A 375–377:46–52

    Article  Google Scholar 

  22. Zhu YT, Liao X (2004) Retaining ductility. Nat Mater 3:351–352

    Article  Google Scholar 

  23. Wang Y, Chen M, Zhou F, Ma E (2002) High tensile ductility in a nanostructured metal. Nature 419:912–915

    Article  Google Scholar 

  24. Wang YM, Ma E (2004) Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater 52:1699–1709

    Article  Google Scholar 

  25. Horita Z, Ohashi K, Fujita T, Kaneko K, Langdon TG (2005) Achieving high strength and high ductility in precipitation-hardened alloys. Adv Mater 17:1599–1602

    Article  Google Scholar 

  26. Zhao YH, Liao XZ, Cheng S, Ma E, Zhu YT (2006) Simultaneously increasing the ductility and strength of nanostructured alloys. Adv Mater 18:2280–2283

    Article  Google Scholar 

  27. Zhao YH, Bingert JE, Liao XZ, Cui BZ, Han K, Sergueeva AV, Mukherjee AK, Valiev RZ, Langdon TG, Zhu YTT (2006) Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv Mater 18:2949–2953

    Article  Google Scholar 

  28. Ma E (2006) Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58(4):49–53

    Article  Google Scholar 

  29. Zhao YH, Bingert JF, Zhu YT, Liao XZ, Valiev RZ, Horita Z, Langdon TG, Zhou YZ, Lavernia EJ (2008) Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density. Appl Phys Lett 92:081903

    Article  Google Scholar 

  30. Zhao YH, Topping T, Bingert JF, Thornton JJ, Dangelewicz AM, Li Y, Liu W, Zhu YT, Zhou Y, Lavernia EJ (2008) High tensile ductility and strength in bulk nanostructured nickel. Adv Mater 20:3033

    Google Scholar 

  31. Zhao Y, Zhu Y, Lavernia EJ (2010) Strategies for improving tensile ductility of bulk nanostructured materials. Adv Eng Mater 12:769–778

    Article  Google Scholar 

  32. Huang CX, Hu WP, Wang QY, Wang C, Yang G, Zhu YT (2015) An ideal ultrafine-grained structure for high strength and high ductility. Mater Res Lett 3:88–94

    Article  Google Scholar 

  33. Zhao YH, Guo YZ, Wei A, Dangelewicz AM, Xu C, Zhu YT, Langdon TG, Zhou YZ, Lavernia EJ (2008) Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scripta Mater 59:627–630

    Article  Google Scholar 

  34. Zhao YH, Guo YZ, Wei Q, Topping TD, Dangelewicz AM, Zhu YT, Langdon TG, Lavernia EJ (2009) Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves. Mater Sci Eng 525A:68–77

    Article  Google Scholar 

  35. Mungole T, Kumar P, Kawasaki M, Langdon TG (2014) A critical examination of the paradox of strength and ductility in ultrafine-grained metals. J Mater Res 29:2534–2546

    Article  Google Scholar 

  36. Valiev RZ, Sergueeva AV, Mukherjee AK (2003) The effect of annealing on tensile deformation behavior of nanostructured SPD titanium. Scripta Mater 49:669–674

    Article  Google Scholar 

  37. Suo T, Li YI, Zhao F, Deng Q, Xie K (2011) Influence of short term annealing on strain hardening rate and flow stress of ultrafine grained material processed by severe plastic deformation. Mater Res Innov 15(s1):S69–S72

    Article  Google Scholar 

  38. Semenova I, Salimgareeva G, Da Costa G, Lefebvre W, Valiev R (2010) Enhanced strength and ductility of ultrafine-grained Ti processed by severe plastic deformation. Adv Eng Mater 12:803–807

    Article  Google Scholar 

  39. Polyakov AV, Semenova IP, Valiev RZ, Huang Y, Langdon TG (2013) Influencing of annealing on ductility of ultrafine-grained titanium processed by equal-channel angular pressing-Conform and drawing. MRS Commun 3:249–253

    Article  Google Scholar 

  40. Maury N, Zhang NX, Huang Y, Zhilyaev AP, Langdon TG (2015) A critical examination of pure tantalum processed by high-pressure torsion. Mater Sci Eng A 638:174–182

    Article  Google Scholar 

  41. Andreau O, Gubicza J, Zhang NX, Huang Y, Jenei P, Langdon TG (2014) Effect of short-term annealing on the microstructures and flow properties of an Al–1% Mg alloy processed by high-pressure torsion. Mater Sci Eng A 615:231–239

    Article  Google Scholar 

  42. Kumar P, Xu C, Langdon TG (2009) Influence of strain rate on strength and ductility in an aluminum alloy processed by equal-channel angular pressing. J Mater Sci 44:3913–3916. doi:10.1007/s10853-009-3535-3

    Article  Google Scholar 

  43. Gifkins RC, Langdon TG (1965) On the question of low-temperature sliding at grain boundaries. J Inst Metals 93:347–352

    Google Scholar 

  44. Ashby MF, Raj R (1970) Diffusion controlled sliding at serrated grain boundary. Scipta Metall 4:737–742

    Article  Google Scholar 

  45. Langdon TG (2006) Grain boundary sliding revisited: developments in sliding over four decades. J Mater Sci 41:597–609. doi:10.1007/s10853-006-6476-0

    Article  Google Scholar 

  46. Kawasaki M, Langdon TG (2007) Principles of superplasticity in ultrafine-grained materials. J Mater Sci 42:1782–1796. doi:10.1007/s10853-006-0954-2

    Article  Google Scholar 

  47. Chinh NQ, Szommer P, Csanádi T, Langdon TG (2006) Flow processes at low temperatures in ultrafine-grained aluminum. Mater Sci Eng A434:326–344

    Article  Google Scholar 

  48. Chinh NQ, Szommer P, Horita Z, Langdon TG (2006) Experimental evidence for grain-boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation. Adv Mater 18:34–39

    Article  Google Scholar 

  49. Ivanov KV, Naydenkin EV (2014) Tensile behavior and deformation mechanisms of ultrafine-grained aluminum processed using equal-channel angular pressing. Mater Sci Eng A606:313–321

    Article  Google Scholar 

  50. Ivanov KV, Naydenkin EV (2014) The effect of strain rate on tensile behavior and deformation mechanisms of ultrafine-grained aluminum. IOP Conf Series. Mater Sci Eng 63:012123

    Google Scholar 

  51. Van Swygenhoven H, Caro A (1997) Plastic behavior of nanophase Ni: a molecular dynamics computer simulation. Appl Phys Lett 71:1652–1654

    Article  Google Scholar 

  52. Schiøtz J, Di Tolla FD, Jacobsen KW (1998) Softening of nanocrystalline metals at very small grain sizes. Nature 391:561–563

    Article  Google Scholar 

  53. Van Swygenhoven H, Derlet PM (2001) Grain-boundary sliding in nanocrystalline FCC metals. Phys Rev B 64:224105

    Article  Google Scholar 

  54. Valiev RZ, Gertsman VYu, Kaibyshev OA, Khannanov ShKh (1983) Non-equilibrium state and recovery of grain-boundary structure. 1. General analysis, crystallogeometrical aspects. Phys Stat Solidi (a) 77:97–105

    Article  Google Scholar 

  55. Valiev RZ, Korznikov AV, Mulyukov RR (1993) Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater Sci Eng A168:141–148

    Article  Google Scholar 

  56. Horita Z, Smith DJ, Furukawa M, Nemoto M, Valiev RZ, Langdon TG (1996) An investigation of grain boundaries in submicrometer-grained Al–Mg solid solution alloys using high-resolution electron microscopy. J Mater Res 11:1880–1890

    Article  Google Scholar 

  57. Sauvage X, Wilde G, Divinski SV, Horita Z, Valiev RZ (2012) Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomenon. Mater Sci Eng A540:1–12

    Article  Google Scholar 

  58. Wilde G, Ribbe J, Reglitz G, Wegner M, Rösner H, Estrin Y, Zehetbauer M, Setman D, Divinski S (2010) Plasticity and grain boundary diffusion at small grain sizes. Adv Eng Mater 12:758–764

    Article  Google Scholar 

  59. Kolobov YR, Grabovetskaya GP, Ivanov MB, Zhilyaev AP, Valiev RZ (2001) Grain boundary diffusion characteristics of nanostructured nickel. Scipta Mater 44:873–878

    Article  Google Scholar 

  60. Fujita T, Horita Z, Langdon TG (2002) Characteristics of diffusion in Al–Mg alloys with ultrafine grain sizes. Phil Mag A82:2249–2262

    Article  Google Scholar 

  61. Wang ZB, Lu K, Wilde G, Divinski SV (2010) Interfacial diffusion in Cu with a gradient nanostructured surface layer. Acta Mater 58:2376–2386

    Article  Google Scholar 

  62. Mungole T, Kumar P, Kawasaki M, Langdon TG (2015) The contribution of grain boundary sliding in tensile deformation of an ultrafine grained aluminum alloy having high strength and high ductility. J Mater Sci 50:3549–3561. doi:10.1007/s10853-015-8915-2

    Google Scholar 

  63. Bell RL, Graeme-Barber C, Langdon TG (1967) The contribution of grain boundary sliding to the overall strain of a polycrystal. Trans Met Soc AIME 239:1821–1824

    Google Scholar 

  64. Langdon TG (1972) The effect of surface configuration on grain boundary sliding. Metall Trans 3:797–801

    Article  Google Scholar 

  65. Islamgaliev RK, Yunusova NF, Valiev RZ, Tsenev NK, Perevezentsev VN, Langdon TG (2003) Characteristics of superplasticity in an ultrafine-grained aluminum alloy processed by ECA pressing. Scipta Mater 49:467–472

    Article  Google Scholar 

  66. Kumar P, Xu C, Langdon TG (2005) The significance of grain boundary sliding in the superplastic Zn–22% Al alloy after processing by ECAP. Mater Sci Eng A411–412:447–450

    Article  Google Scholar 

  67. Huang Y, Langdon TG (2002) Characterization of deformation processes in a Zn-22% Al alloy using atomic force microscopy. J Mater Sci 37:4993–4998. doi:10.1023/A:1021071228521

    Article  Google Scholar 

  68. Huang Y, Langdon TG (2003) Using atomic force microscopy to evaluate the development of mesoscopic shear planes in materials processed by severe plastic deformation. Mater Sci Eng A358:114–121

    Article  Google Scholar 

  69. Han JH, Mohamed FA (2011) Quantitative measurements of grain boundary sliding in an ultrafine-grained Al alloy by atomic force microscopy. Metall Mater Trans A42:3969–3978

    Article  Google Scholar 

  70. Langdon TG (1994) An evaluation of the strain contributed by grain boundary sliding in superplasticity. Mater Sci Eng A174:225–230

    Article  Google Scholar 

  71. Clarisse L, Bataille A, Pennec Y, Crampon J, Duclos R (1999) Investigation of grain boundary sliding during superplastic deformation of a fine-grained alumina by atomic force microscopy. Ceram Int 25:389–394

    Article  Google Scholar 

  72. Kini M, Chokshi AH (2010) The influence of titania on creep in superplastic zirconia. J Am Ceram Soc 93:1725–1731

    Google Scholar 

  73. Ghosh S, Chokshi AH (2014) Creep in nanocrystalline zirconia. Scripta Mater 86:13–16

    Article  Google Scholar 

  74. Eaton P, West P (2010) Atomic Force Microscopy. Oxford University Press, Oxford

    Book  Google Scholar 

  75. Yang K, Fecht HJ, Ivanisenko Y (2014) First direct in situ observation of grain boundary sliding in ultrafine grained noble metal. Adv Eng Mater 16:517–521

    Article  Google Scholar 

  76. Roy S, Suwas S (2013) Deformation mechanism during superplastic testing of Ti–6Al–4 V–0.1B alloy. Mater Sci Eng A574:205–217

    Article  Google Scholar 

  77. Chinh NQ, Győri T, Valiev RZ, Szommer P, Varga G, Havancsák K, Langdon TG (2012) Observations of unique plastic behavior in micro-pillars of an ultrafine-grained alloy. MRS Commun 2:75–78

    Article  Google Scholar 

  78. Chinh NQ, Valiev RZ, Sauvage X, Varga G, Havancsák K, Kawasaki M, Straumal BB, Langdon TG (2014) Grain boundary phenomena in an ultrafine-grained Al–Zn alloy with improved mechanical behavior for micro-devices. Adv Eng Mater 16:1000–1009

    Article  Google Scholar 

  79. Greer JR, Oliver WC, Nix WD (2005) Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53:1821–1830

    Article  Google Scholar 

  80. Greer JR, Nix WD (2006) Nanoscale gold pillars strengthened through dislocation starvation. Phy Rev B 73:245410

    Article  Google Scholar 

  81. Ng KS, Ngan AHW (2008) Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater 56:1712–1720

    Article  Google Scholar 

  82. Shao S, Abdolrahim N, Bahr DF, Lin G, Zbib HM (2014) Stochastic effects in plasticity in small volumes. Int J Plast 52:117–132

    Article  Google Scholar 

  83. Crosby T, Po G, Erel C, Ghoniem N (2015) The origin of strain avalanches in sub-micron plasticity of fcc metals. Acta Mater 89:123–132

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by IISc-STC grant # ISTC0305 and a Seed Grant (Indian Institute of Science, Bangalore) to PK, in part by the NRF Korea funded by MoE under Grant No. NRF-2014R1A1A2057697 to MK and in part by the National Science Foundation of the United States under Grant No. DMR-1160966 and the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS to TGL.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence G. Langdon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Kawasaki, M. & Langdon, T.G. Review: Overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures. J Mater Sci 51, 7–18 (2016). https://doi.org/10.1007/s10853-015-9143-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9143-5

Keywords

Navigation