Skip to main content
Log in

Ion Radiation Impact on Microstructure and Mechanical Properties of W–6Re Alloy at 500°С

  • RADIATION RESISTANCE OF MATERIALS AND EQUIPMENT
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The paper reports the results of the ion irradiation impact on a monocrystalline tungsten alloy, W–6Re. This material is considered for use in the design of fusion reactors. Irradiation was carried out in order to simulate radiation effects and analyze the radiation resistance of the fusion reactor material. Specimens were irradiated with 5.6 MeV Fe ions at 500°C up to a maximum damage dose of 8 dpa. Microstructure of W–6Re was analyzed before and after irradiation. It is shown with transmission electron microscopy that the formation of structural defects, dislocation loops with sizes of 2–15 nm and a number density of 1.2 × 1023 m–3 occurs as a result of irradiation. Detailed analysis by atomic probe tomography microscope revealed the decomposition of the solid solution with the formation of nanoscale segregations enriched in rhenium by 18 at %. The radiation-induced hardening of the irradiated layer is determined by nanoindentation. The strength increment was 1.6 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Rieth et al., J. Nucl. Mater. 432, 482 (2013).

    Article  ADS  Google Scholar 

  2. Y. Qi et al., Mater. Lett. 242, 115 (2019).

    Article  Google Scholar 

  3. I. Sukuba et al., Eur. Phys. J. D 70, 11 (2016).

    Article  ADS  Google Scholar 

  4. M. Merola et al., Fusion Eng. Des. 96–97, 34 (2015).

    Article  Google Scholar 

  5. R. A. Pitts et al., J. Nucl. Mater. 438, S48 (2013).

    Article  Google Scholar 

  6. G. Pintsuk, Tungsten as a Plasma-Facing Material in Comprehensive Nuclear Materials (Elsevier, Amsterdam, 2012), p. 551.

    Google Scholar 

  7. M. R. Gilbert and J.-Ch. Sublet, Nucl. Fusion 51, 043005 (2011).

    Article  ADS  Google Scholar 

  8. Sh. Watanabe, Sh. Nogami, J. Reiser, M. Rieth, S.   Sickinger, S. Baumgartner, T. Miyazawa, and A. Hasegawa, Fusion Eng. Des. 148, 111323 (2019).

    Article  Google Scholar 

  9. A. Xu et al., Acta Mater. 87, 121 (2015).

    Article  Google Scholar 

  10. A. Xu et al., Acta Mater. 124, 71 (2017).

    Article  ADS  Google Scholar 

  11. E. Hasenhuetl et al., Nucl. Instrum. Methods Phys. Res., Sect. B 397, 11 (2017).

    Google Scholar 

  12. D. E. J. Armstrong et al., J. Nucl. Mater. 432, 428 (2013).

    Article  ADS  Google Scholar 

  13. A. Hasegawa et al., J. Nucl. Mater. 471, 175 (2016).

    Article  ADS  Google Scholar 

  14. T. Kulevoy, B. Chalyhk, P. Fedin, A. Kozlov, et al., Rev. Sci. Instrum. 87, 02C102 (2016).

  15. A. Spitsyn, N. Bobyr, T. Kulevoy, P. Fedin, A. Semennikov, and V. Stolbunov, Fusion Eng. Des. 146, 1313 (2019).

    Article  Google Scholar 

  16. S. V. Rogozhkin, A. A. Nikitin, A. A. Khomich, N. A. Iskandarov, V. V. Khoroshilov, A. A. Bogachev, A. A. Lukyanchuk, O. A. Raznitsyn, A. S. Shutov, P. A. Fedin, R. P. Kuibeda, T. V. Kulevoy, A. L. Vasiliev, M. Yu. Presniakov, K. S. Kravchuk, and A. S. Useinov, Phys. At. Nucl. 82, 1239 (2019).

    Article  Google Scholar 

  17. T. Kulevoy, A. Aleev, S. Ivanov, A. Kozlov, G. Kropachev, R. Kuibeda, Nikitin, A. S. Rogozhkin, A. Semennikov, B. Sharkov, and A. Zaluzhny, in Proceedings of the International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, AP/P5 07 (2009), p. 1.

  18. D. Kashinsky, A. Kolomiets, T. Kulevoy, R. Kuybida, V. Kuzmichov, S. Minaev, V. Pershin, B. Sharkov, R. Vengrov, and S. Yaramishev, in Proceedings of European Particle Accelerator Conference EPAC 2000, p. 854.

  19. R. E. Stoller, M. B. Toloczko, G. S. Was, A. G. Certain, S. D. Dwaraknath, and F. A. Garner, Nucl. Instrum. Methods Phys. Res., Sect. B 310, 75 (2013).

    Google Scholar 

  20. S. V. Rogozhkin, A. A. Aleev, A. A. Lukyanchuk, A. S. Shutov, O. A. Raznitsyn, and S. E. Kirillov, Instrum. Exp. Tech. 60, 428 (2017).

    Article  Google Scholar 

  21. Y.-T. Cheng and C.-M. Cheng, Mater. Sci. Eng. R 44, 91 (2004). https://doi.org/10.1016/j.mser.2004.05.001

    Article  Google Scholar 

  22. W. D. Nix and H. Gao, J. Mech. Phys. Solids 46, 411 (1998).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Specimen analysis and irradiation were performed at the KAMIKS Shared Access Center (http://kamiks.itep.ru/) at the Alikhanov Institute for Theoretical and Experimental Physics, National Research Center “Kurchatov Institute.”

Funding

The reported study was funded by the Russian Foundation for Basic Research according to the research project no. 18-32-20174.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nikitin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, A.A., Bobyr, N.P., Rogozhkin, S.V. et al. Ion Radiation Impact on Microstructure and Mechanical Properties of W–6Re Alloy at 500°С. Phys. Atom. Nuclei 83, 1638–1643 (2020). https://doi.org/10.1134/S1063778820120054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820120054

Keywords:

Navigation