Skip to main content
Log in

Effect of Ce Addition on the As-Cast and As-Forged Microstructure of Fe-TiB2 Composites

  • Microstructure Evolution During Deformation Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effects of Ce addition on the as-cast and as-forged microstructure of Fe-TiB2 composites were explored. Fe-TiB2 composites with hypereutectic concentration were formed in situ from Fe-Ti-B melts at various cooling rates with the addition of the rare-earth element Ce. The size of both primary and eutectic TiB2 particles increased with a decrease in the cooling rate. Many clustered primary particles were found in the Ce-free specimens, while the addition of Ce significantly refined the TiB2 particles and scattered them into a dispersed distribution. Hot forging tends to further refine the size and enhance the number density of eutectic TiB2 particles. A decrease in interparticle spacing could be achieved by an increase of cooling rate, the addition of Ce, or hot forging. Tensile strength and hardness of the Fe-TiB2 composites both increased with decreasing interparticle spacing in accordance with the Hall–Petch relationship. Engineering strain was enhanced by Ce addition, then further improved by hot forging, and the proportion of dimpled region in the fracture surface was improved as well. Ce addition and hot forging enhanced both the tensile strength and the ductility of Fe-TiB2 composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Springer, R.A. Fernandez, M.J. Duarte, A. Kostka, and D. Raabe, Acta Mater. 96, 47 (2015).

    Article  Google Scholar 

  2. R.G. Munro, J. Res. Natl. Inst. Stan. 105, 709 (2000).

    Article  Google Scholar 

  3. S. Lartigue-Korinek, M. Walls, N. Haneche, L.M. Cha, L. Mazerolles, and F. Bonnet, Acta Mater. 98, 297 (2015).

    Article  Google Scholar 

  4. X.K. Huynh, S.W. Bae, and J.S. Kim, Korean J. Met. Mater. 55, 10 (2017).

    Article  Google Scholar 

  5. M.S. Storozhenko, A.P. Umanskii, A.E. Terentiev, and I.M. Zakiev, Powder Metall. Met. Ceram. 56, 60 (2017).

    Article  Google Scholar 

  6. X.K. Huynh and J.S. Kim, J. Korean Power Metall. Inst. 23, 282 (2016).

    Article  Google Scholar 

  7. N. Yang and I. Sinclair, Metall. Mater. Trans. A 34, 2017 (2003).

    Article  Google Scholar 

  8. A. Antoni-Zdziobek, M. Gospodinova, F. Bonnet, and F. Hodaj, J. Phase Equilib. Diff. 35, 701 (2014).

    Article  Google Scholar 

  9. R. Aparicio-Fernandez, H. Springer, A. Szczepaniak, H. Zhang, and D. Raabe, Acta Mater. 107, 38 (2016).

    Article  Google Scholar 

  10. C. Baron, H. Springer, and D. Raabe, Mater. Design 97, 357 (2016).

    Article  Google Scholar 

  11. L. Cha, S. Lartigue-Korinek, M. Walls, and L. Mazerolles, Acta Mater. 60, 6382 (2012).

    Article  Google Scholar 

  12. Z. Hadjem-Hamouche, J.-P. Chevalier, Y. Cui, and F. Bonnet, Steel Res. Int. 83, 538 (2012).

    Article  Google Scholar 

  13. S. Khaple, V.V.S. Prasad, B.R. Golla, R.G. Baligidad, and A.A. Gokhale, Mat. Sci. Eng. A 697, 167 (2017).

    Article  Google Scholar 

  14. Y.Z. Li, Z.C. Luo, H.L. Yi, and M.X. Huang, Metall. Mater. Trans. E 3, 203 (2016).

    Google Scholar 

  15. H. Zhang, H. Springer, R. Aparicio-Fernandez, and D. Raabe, Acta Mater. 118, 187 (2016).

    Article  Google Scholar 

  16. H.S. Kim, C. Chul-Ho, and L. Hae-Geon, Scripta Mater. 53, 1253 (2005).

    Article  Google Scholar 

  17. C. Baron, H. Springer, and D. Raabe, Mater. Design 111, 185 (2016).

    Article  Google Scholar 

  18. H. Torkamani, S. Raygan, C.G. Mateo, J. Rassizadehghani, Y. Palizdar, and D. San-Martin, Met. Mater. Int. 24, 773 (2018).

    Article  Google Scholar 

  19. M.Z. Jiang, Y.C. Yu, H. Li, X. Ren, and S.B. Wang, High Temp. Mat. Proc. 36, 145 (2017).

    Google Scholar 

  20. M.M. Song, B. Song, W.B. Xin, G.L. Sun, G.Y. Song, and C.L. Hu, Ironmak. Steelmak. 42, 594 (2015).

    Article  Google Scholar 

  21. P. Kratochvll, P. Malek, J. Pesieka, J. Hakl, T. Vlasak, and P. Hanus, Met. Mater. 44, 179 (2006).

    Google Scholar 

  22. X.L. Shi, Y.H. Jiang, and R. Zhou, J. Iron. Steel Res. Int. 23, 1226 (2016).

    Article  Google Scholar 

  23. F. Pan, J. Zhang, H.L. Chen, Y.H. Su, C.L. Kuo, Y.H. Su, S.H. Chen, K.J. Lin, P.H. Hsieh, and W.S. Hwang, Materials 9 (2016).

    Article  Google Scholar 

  24. Y. F. Hao, G. G. Cheng, and Q. Q. Ma, Metall. Res. Technol. 114 (2017).

    Article  Google Scholar 

  25. Q.T. Li, Y.P. Lei, and H.G. Fu, Surf. Coat. Technol. 239, 102 (2014).

    Article  Google Scholar 

  26. International Standard of Metallic materials—Tensile testing, ISO 6892-1: 2011 (Geneva, Switzerland, 2011).

  27. E.O. Hall, Proc. Phys. Soc. Sect. B 64, 747 (1951).

    Article  Google Scholar 

  28. N.J. Petch, J. Iron Steel Inst. 174, 25 (1953).

    Google Scholar 

  29. K. Han, J.D. Embury, J.R. Sims, L.J. Campbell, H.J. Schneider-Muntau, V.I. Pantsyrnyi, A. Shikov, A. Nikulin, and A. Vorobieva, Mater. Sci. Eng., A A267, 99 (1999).

    Article  Google Scholar 

  30. L. Zhang, K. Han, T.N. Man, E.G. Wang, and X.W. Zuo, J. Iron. Steel Res. Int. 23, 638 (2016).

    Article  Google Scholar 

  31. M. Meyers and K. Chawla, Mechanical behavior of materials, 2nd ed. (New York: Cambridge University Press, 2008).

    Book  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51674083) and the Programme of Introducing Talents of Discipline to Universities 2.0 (the 111 Project of China 2.0, No. BP0719037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Zhang or Engang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Gao, J., Huang, M. et al. Effect of Ce Addition on the As-Cast and As-Forged Microstructure of Fe-TiB2 Composites. JOM 71, 4144–4152 (2019). https://doi.org/10.1007/s11837-019-03751-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03751-x

Navigation