Skip to main content
Log in

Fatigue crack growth in a particulate TiB2-reinforced powder metallurgy iron-based composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fatigue crack growth behavior has been examined in a particulate titanium diboride (TiB2)-reinforced iron-based composite that had been produced via a mechanical alloying process. Comparison with equivalent unreinforced material indicated that fatigue crack growth resistance in the composite was superior to monolithic matrix material in the near-threshold regime. The composite exhibited relatively low crack closure levels at threshold, indicative of a high intrinsic (effective) threshold growth resistance compared to the unreinforced iron. The lower closure levels of the composite were consistent with reduced fracture surface asperity sizes, attributable to the reinforcement particles limiting the effective slip distance for stage I-type facet formation. The observed shielding behavior was rationalized in terms of recent finite-element analysis of crack closure in relation to the size of crack wake asperities and the crack-tip plastic zone. The different intrinsic fatigue thresholds of the composite and unreinforced iron were closely consistent with the influences of stiffness and yield strength on cyclic crack-tip opening displacements. Cracks in the composite were generally seen to avoid direct crack-tip-particle interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Sinclair and P.J. Gregson: Mater. Sci. Technol., 1997, vol. 13, pp. 709–26.

    CAS  Google Scholar 

  2. P.S. Goodwin, T.M.T. Hinder, A. Wisbey, and C.M. Ward-Close: Mater. Sci. Forum, 1998, vols. 269–272, pp. 53–62.

    Google Scholar 

  3. Z. Kulikowski, A. Wisbey, T.M.T. Godfrey, P.S. Goodwin, and H.M. Flower: Mater. Sci. Technol., 2000, vol. 16, pp. 925–28.

    Article  CAS  Google Scholar 

  4. K. Tanaka, T. Oshima, and T. Saito: THERMEC’97, Int. Conf. on Thermomechanical Processing of Steels & Other Materials, T. Chandra and T. Sakai, eds., Tms, Warrendale, PA, 1997, pp. 1279–85.

    Google Scholar 

  5. J.K. Shang and R.O. Ritchie: Acta Metall., 1989, vol. 37, pp. 2267–78.

    Article  CAS  Google Scholar 

  6. J.J. Mason and R.O. Ritchie: Mater. Sci. Eng., 1997, vol. A231, pp. 170–82.

    CAS  Google Scholar 

  7. A.J. Padkin, M.F. Brereton, and W.J. Plumbridge: Mater. Sci. Technol., 1987, vol. 3, pp. 217–23.

    CAS  Google Scholar 

  8. J.K. Shang, W. Yu, and R.O. Ritchie: Mater. Sci. Eng., 1988, vol. A102, pp. 181–92.

    Google Scholar 

  9. S. Kumai, J.E. King, and J.F. Knott: Fat. Fract. Eng. Mater. Struct., 1992, vol. 15, pp. 1–11.

    Article  CAS  Google Scholar 

  10. J. Llorca, J. Ruiz, J.C. Healy, M. Elices, and C.J. Beevers: Mater. Sci. Eng., 1994, vol. A185, pp. 1–15.

    CAS  Google Scholar 

  11. J. Boselli, P.D. Pitcher, P.J. Gregson, and I. Sinclair: Scripta Mater., 1998, vol. 38, pp. 839–44.

    Article  CAS  Google Scholar 

  12. J. Boselli: Ph.D. Thesis, University of Southampton, Southampton, United Kingdom, 1999.

    Google Scholar 

  13. Z. Wang and R.J. Zhang: Acta Metall., 1994, vol. 42, pp. 1433–45.

    Article  CAS  Google Scholar 

  14. J. Boselli, P.D. Pitcher, P.J. Gregson, and I. Sinclair: J. Microsc., 1999, vol. 195, pp. 104–12.

    Article  CAS  Google Scholar 

  15. N. Yang, J. Boselli, P.G. Gregson, and I. Sinclair: Mater. Sci. Technol., 2000, vol. 16, pp. 797–805.

    CAS  Google Scholar 

  16. N. Yang, J. Boselli, and I. Sinclair: J. Microsc., 2001, vol. 201, pp. 189–200.

    Article  Google Scholar 

  17. B. Gross and J.E. Srawley: J. Test Eval., 1983, vol. 11, pp. 357–59.

    Article  Google Scholar 

  18. Y. Xu, P.J. Gregson, and I. Sinclair: Mater. Sci. Eng., 2000, vol. A284, pp. 114–25.

    CAS  Google Scholar 

  19. Y. Xu: Ph.D. Thesis, University of Southampton, Southampton, United Kingdom, 2001.

    Google Scholar 

  20. T. Christman and R. Suresh: Mater. Sci. Eng., 1988, vol. 102, pp. 211–16.

    Article  Google Scholar 

  21. M. Levin and B. Karlsson: Mater. Sci. Technol., 1991, vol. 7, pp. 596–607.

    CAS  Google Scholar 

  22. R.O. Ritchie: Mater. Sci. Eng., 1988, vol. A103, pp. 15–28.

    CAS  Google Scholar 

  23. K.T. Venkateswara Rao and R.O. Ritchie: Int. Met. Rev., 1992, vol. 37, pp. 153–85.

    Google Scholar 

  24. K.T. Venkateswara Rao, W. Yu, and R.O. Ritchie: Metall. Trans. A, 1988, vol. 19A, pp. 549–60.

    Google Scholar 

  25. S. Suresh and R.O. Ritchie: Metall. Trans. A, 1982, vol. 13A, pp. 1627–31.

    Google Scholar 

  26. M.R. Parry, S. Syngellakis, and I. Sinclair: Mater. Sci. Eng., 2000, vol. A291, pp. 224–34.

    CAS  Google Scholar 

  27. M.R. Parry: Ph.D. Thesis, University of Southampton, Southampton, United Kingdom, 2001.

    Google Scholar 

  28. C.F. Shih: J. Mech. Phys. Solids, 1981, vol. 29, pp. 305–26.

    Article  Google Scholar 

  29. J. Boselli, P.D. Pitcher, P.J. Gregson, and I. Sinclair: Mater. Sci. Eng., 2001, vol. 300, pp. 115–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, N., Sinclair, I. Fatigue crack growth in a particulate TiB2-reinforced powder metallurgy iron-based composite. Metall Mater Trans A 34, 2017–2024 (2003). https://doi.org/10.1007/s11661-003-0166-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0166-1

Keywords

Navigation