Skip to main content
Log in

Creep Behaviors Along Characteristic Crystal Orientations of Sn and Sn-1.8Ag by Using Nanoindentation

  • Advanced Electronic Interconnection
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The creep mechanisms of Sn and Sn-1.8Ag along specific orientations are investigated by the constant-strain-rate nanoindentation method. Due to the anisotropy of Sn, the mechanical behaviors could be very different along different crystal orientations. For microelectronic applications, Ag is often added to Sn to increase its strength. Data from creep test show that Ag addition increases the stress exponent by 3, which indicates that the rupture time could be extended by Ag addition. Moreover, the creep rate of Sn (100) grain is lower than that of Sn (001) grain in a low stress regime, namely, that [100] in Sn would have better creep resistance for usual applications. After indentation, transmission electron images of Sn samples show that the slip systems are \( (1\bar{1}0) \)\( [11\bar{1}] \) in (100) grain and (101) \( [1\bar{1}\bar{1}] \) in (001) grain. Lastly, Sn-1.8Ag has better performance along [100] in creep resistance due to greater hindrance of Ag atoms on dislocation motion and its critical threshold stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Suh, D.W. Kim, P. Liu, H. Kim, J.A. Weninger, C.M. Kumar, A. Prasad, B.W. Grimsley, and H.B. Tejada, Mater. Sci. Eng. A 460, 595 (2007).

    Article  Google Scholar 

  2. M.D. Mathew, H. Yang, S. Movva, and K.L. Murty, Metall. Mater. Trans. A 36, 99 (2005).

    Article  Google Scholar 

  3. Q.K. Zhang, F.Q. Hu, Z.L. Song, and Z.F. Zhang, Mater. Sci. Eng. A 701, 187 (2017).

    Article  Google Scholar 

  4. E. Teatum, K. Gschneidner, J. Waber, and W.B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys (New York: Wiley, 1972).

    Google Scholar 

  5. A.U. Telang and T.R. Bieler, JOM 57, 44 (2005).

    Article  Google Scholar 

  6. T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, and B. Nandagopal. IEEE Trans, Comp. Packag. Technol. 31, 370 (2008).

    Article  Google Scholar 

  7. M.L. Huang, L. Wang, and C.M.L. Wu, J. Mater. Res. 17, 2897 (2002).

    Article  Google Scholar 

  8. N. Wade, K. Wu, J. Kunii, S. Yamada, and K. Miyahara, J. Electron. Mater. 30, 1228 (2001).

    Article  Google Scholar 

  9. S. Devaki Rani and G.S. Murthy, Mater. Sci. Technol. 20, 403 (2004).

    Article  Google Scholar 

  10. H.G. Song, J.W. Morris Jr, and F. Hua, Mater. Trans. 43, 1847 (2002).

    Article  Google Scholar 

  11. R. Mahmudi, A.R. Geranmayeh, S.R. Mahmoodi, and A. Khalatbari, J. Mater. Sci. 18, 1071 (2007).

    Google Scholar 

  12. C.H. Raeder, L.E. Felton, V.A. Tanzi, and D.B. Knorr, J. Electron. Mater. 23, 611 (1994).

    Article  Google Scholar 

  13. J. Zhao, L. Qi, X.M. Wang, and L. Wang, J. Alloys Comp. 375, 196 (2004).

    Article  Google Scholar 

  14. D. Witkin, J. Electron. Mater. 41, 190 (2012).

    Article  Google Scholar 

  15. J.E. Breen and J. Weertman, JOM 7, 1230 (1955).

    Article  Google Scholar 

  16. J. Weertman and J.E. Breen, J. Appl. Phys. 27, 1189 (1956).

    Article  Google Scholar 

  17. P. Adeva, G. Caruana, O.A. Ruano, and M. Torralba, Mater. Sci. Eng. A 194, 17 (1995).

    Article  Google Scholar 

  18. N. Hamada, M. Hamada, T. Uesugi, Y. Takigawa, and K. Higashi, Mater. Trans. 51, 1747 (2010).

    Article  Google Scholar 

  19. G. Zhao and F. Yang, Mater. Sci. Eng. A 591, 97 (2014).

    Article  Google Scholar 

  20. C. Park, X. Long, S. Haberman, S. Ma, I. Dutta, R. Mahajan, and S.G. Jadhav, J. Mater. Sci. 42, 5182 (2007).

    Article  Google Scholar 

  21. S.N.G. Chu and J.C.M. Li, Mater. Sci. Eng. 39, 1 (1979).

    Article  Google Scholar 

  22. M.J. Mayo and W.D. Nix, Acta Metall. 36, 2183 (1988).

    Article  Google Scholar 

  23. M. Fujiwara and M. Otsuka, Mater. Sci. Eng. A 319, 929 (2001).

    Article  Google Scholar 

  24. L. Shen, W.C.D. Cheong, Y.L. Foo, and Z. Chen, Mater. Sci. Eng. A 532, 505 (2012).

    Article  Google Scholar 

  25. I. Shohji, T. Yoshida, T. Takahashi, and S. Hioki, Mater. Sci. Eng. A 366, 50 (2004).

    Article  Google Scholar 

  26. C.K. Lin and D.Y. Chu, J. Mater. Sci. 16, 355 (2005).

    Google Scholar 

  27. I. Dutta, C. Park, and S. Choi, Mater. Sci. Eng. A 379, 401 (2004).

    Article  Google Scholar 

  28. F. Yang and J.C.M. Li, J. Mater. Sci. 18, 191 (2007).

    Google Scholar 

  29. E. Schmid and W. Boas, Plasticity (London: Chapman-Hall, 1968).

    Google Scholar 

  30. H. Mark and M. Polanyi, Z. Phys. A Hadrons Nucl. 18, 75 (1923).

    Google Scholar 

  31. J. Obinata and E. Schmid, Z. Phys. A Hadrons Nucl. 82, 224 (1933).

    Google Scholar 

  32. G.I. Kirichenko and V.P. Soldatov, Fiz. Met. Metalloved. 54, 560 (1982).

    Google Scholar 

  33. K. Ojima and T. Hirokawa, Jpn. J. Appl. Phys. 22, 46 (1983).

    Article  Google Scholar 

  34. R. Fiedler and A.R. Lang, J. Mater. Sci. 7, 531 (1972).

    Article  Google Scholar 

  35. R. Fiedler and I. Vagera, Physica Status Solidi (a) 32, 419 (1975).

    Article  Google Scholar 

  36. A.N. Stroh, Philos. Mag. 3, 625 (1958).

    Article  MathSciNet  Google Scholar 

  37. B. Düzgün and I. Aytaş, Jpn. J. Appl. Phys. 32, 3214 (1993).

    Article  Google Scholar 

  38. K. Honda, Jpn. J. Appl. Phys. 17, 33 (1978).

    Article  Google Scholar 

  39. K. Honda, Jpn. J. Appl. Phys. 18, 215 (1979).

    Article  Google Scholar 

  40. K. Honda, Jpn. J. Appl. Phys. 26, 637 (1987).

    Article  Google Scholar 

  41. M. Nagasaka, Jpn. J. Appl. Phys. 28, 446 (1989).

    Article  Google Scholar 

  42. L.P. Lehman, Y. Xing, T.R. Bieler, and E.J. Cotts, Acta Mater. 58, 3546 (2010).

    Article  Google Scholar 

  43. T. Chen and I. Dutta, J. Electron. Mater. 37, 347 (2008).

    Article  Google Scholar 

  44. M. Kerr and N. Chawla, Acta Mater. 52, 4527 (2004).

    Article  Google Scholar 

  45. L.J. Yu, H.W. Yen, J.Y. Wu, J.J. Yu, and C.R. Kao, Mater. Sci. Eng. A 685, 123 (2017).

    Article  Google Scholar 

  46. R. Peierls, Proc. Phys. Soc. 52, 34 (1940).

    Article  Google Scholar 

  47. F.R.N. Nabarro, Proc. Phys. Soc. 59, 256 (1947).

    Article  MathSciNet  Google Scholar 

  48. F. Vnuk, M.H. Ainsley, and R.W. Smith, J. Mater. Sci. 16, 1171 (1981).

    Article  Google Scholar 

  49. G.R. Love, Acta Metall. 12, 731 (1964).

    Article  Google Scholar 

  50. J. Yu, D.K. Joo, and S.W. Shin, Acta Mater. 50, 4315 (2002).

    Article  Google Scholar 

  51. B.F. Dyson, J. Appl. Phys. 37, 2375 (1966).

    Article  Google Scholar 

  52. W.F. Gale and T.C. Totemeier, Smithells Metals Reference Book (New York, NY: Elsevier, 2003).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial supports of the Ministry of Science and Technology of Taiwan (107-2221-E-002-014-MY3) and National Taiwan University (NTU-CC-108L892401). This work was also supported by the “Advanced Research Center for Green Materials Science and Technology” from The Featured Area Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (108L9006) and the Ministry of Science and Technology in Taiwan (MOST 108-3017-F-002-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Kao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, P.J., Wu, J.Y., Yu, H.Y. et al. Creep Behaviors Along Characteristic Crystal Orientations of Sn and Sn-1.8Ag by Using Nanoindentation. JOM 71, 2998–3011 (2019). https://doi.org/10.1007/s11837-019-03557-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03557-x

Navigation