Skip to main content
Log in

Fine Grains Reduce Cracking Susceptibility During Solidification: Insights from Phase-Field Simulations

  • Solidification Defects in Additive Manufactured Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Hot cracking is commonly observed in welding and metal additive manufacturing processes. In this work, the effects of grain size on cracking susceptibility during solidification were investigated using two-dimensional phase-field simulations. Al-3.0 wt.% Cu alloy was chosen as an example, and the grain size was controlled by adjusting the primary dendritic arm spacing. It was found that fine grains can significantly reduce liquid channel segregation and facilitate earlier coalescence of adjacent grains to resist cracking. Moreover, the cracking susceptibility indexes were predicted from the microstructurally complex phase-field data, showing good agreement with the simulated liquid channel morphology and segregation. Both the liquid channel characteristics and cracking susceptibility index demonstrated how grain refining reduces cracking susceptibility during solidification in welding and metal additive manufacturing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Kou, Welding Metallurgy, 2nd ed. (Hoboken: Wiley, 2013), pp. 263–299.

    Google Scholar 

  2. J.H. Dudas and F.R. Collins, Weld. J. 45, 241 (1966).

    Google Scholar 

  3. S. Kou and Y. Le, Metall. Trans. A 16, 1345 (1985).

    Article  Google Scholar 

  4. K. Shinozaki, P. Wen, M. Yamamoto, K. Kadoi, Y. Kohno, and T. Komori, J. Jpn. Weld. Soc. 29, 90s (2011).

    Article  Google Scholar 

  5. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock, Nature 549, 365 (2017).

    Article  Google Scholar 

  6. I. Todd, Nature 549, 342 (2017).

    Article  Google Scholar 

  7. S. Kou, Acta Mater. 88, 366 (2015).

    Article  Google Scholar 

  8. S. Kou, Weld. J. 94, 374s (2015).

    Google Scholar 

  9. D. Tourret, Y. Song, A.J. Clarke, and A. Karma, Acta Mater. 122, 220 (2017).

    Article  Google Scholar 

  10. M. Ohno and K. Matsuura, Phys. Rev. E 79, 31603 (2009).

    Article  Google Scholar 

  11. L. Wang, Y. Wei, X. Zhan, F. Yu, X. Cao, C. Gu, and W. Ou, J. Mater. Process. Tech. 246, 22 (2017).

    Article  Google Scholar 

  12. F. Yu, Y. Wei, Y. Ji, and L.Q. Chen, J. Mater. Process. Tech. 255, 285 (2018).

    Article  Google Scholar 

  13. L. Wang and Y. Wei, JOM-US 70, 1 (2018).

    Article  Google Scholar 

  14. L. Wang, N. Wang, and N. Provatas, Acta Mater. 126, 302 (2017).

    Article  Google Scholar 

  15. S. Geng, P. Jiang, X. Shao, G. Mi, H. Wu, Y. Ai, C. Wang, C. Han, R. Chen, and W. Liu, Scr. Mater. 150, 120 (2018).

    Article  Google Scholar 

  16. B. Böttger, M. Apel, B. Santillana, and D.G. Eskin, Metall. Mater. Trans. A 44, 3765 (2013).

    Article  Google Scholar 

  17. T. Takaki, M. Ohno, T. Shimokawabe, and T. Aoki, Acta Mater. 81, 272 (2014).

    Article  Google Scholar 

  18. H.J. Diepers, D. Ma, and I. Steinbach, J. Cryst. Growth 237–239, 149 (2002).

    Article  Google Scholar 

  19. J. Liu and S. Kou, Acta Mater. 100, 359 (2015).

    Article  Google Scholar 

  20. H. Xing, X. Dong, H. Wu, G. Hao, J. Wang, C. Chen, and K. Jin, Sci. Rep. 6, 26625 (2016).

    Article  Google Scholar 

  21. S.H. Han and R. Trivedi, Acta Mater. 42, 25 (1994).

    Article  Google Scholar 

  22. W. Huang, X. Geng, and Y. Zhou, J. Cryst. Growth 134, 105 (1993).

    Article  Google Scholar 

  23. D. Tourret and A. Karma, Acta Mater. 82, 64 (2015).

    Article  Google Scholar 

  24. D. Tourret and A. Karma, Acta Mater. 61, 6474 (2013).

    Article  Google Scholar 

  25. S. Terzi, L. Salvo, M. Suery, A.K. Dahle, and E. Boller, Acta Mater. 58, 20 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the National Basic Research Program (973 Program) of China under Grant No. 2014CB046703, the National Natural Science Foundation of China under Grant Nos. 51705173 and 51721092, the Fundamental Research Funds for the Central Universities, HUST: No. 2018JYCXJJ034, the Postdoctoral Science Foundation of China under Grant No. 2018M632837, and the opening project of State Key Laboratory of Digital Manufacturing Equipment and Technology (HUST) under Grant No. DMETKF2018001. The calculations in this work were performed on TianHe-2, with thanks for the support of the National Supercomputer Center in Guangzhou (NSCC-GZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoning Geng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, P., Geng, S., Shao, X. et al. Fine Grains Reduce Cracking Susceptibility During Solidification: Insights from Phase-Field Simulations. JOM 71, 3223–3229 (2019). https://doi.org/10.1007/s11837-019-03342-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03342-w

Navigation