Skip to main content
Log in

Grain Structure Evolution during Friction-Stir Welding

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

In this work, the current state of understanding of grain structure evolution during friction-stir welding is briefly reviewed. The broad aspects of this process and experimental techniques for its examination are critically addressed. The specific character of the microstructural evolutions in body-centered cubic, face-centered cubic and hexagonal close-packed metals are considered in details. In all cases, the grain structure evolution is shown to be a relatively complex process, which usually involves geometric effect of strain, continuous recrystallization and discontinuous recrystallization. Moreover, mechanical twinning, annealing twinning and grain convergence may also occur in particular cases. It is also demonstrated that activation of a specific microstructural mechanism is primarily governed by crystal structure and stacking fault energy but may also be influenced by welding temperature. Specifically, microstructure evolution in cubic metals with high stacking-fault energy is primarily governed by the continuous recrystallization whereas grain structure development in materials with low stacking-fault energy is mainly driven by the discontinuous recrystallization. In the case of transient stacking-fault energy, the materials may experience a transition from the continuous to the discontinuous mechanism. In hexagonal metals, microstructural changes are shown to be directly linked with crystallographic texture. Specifically, a formation of very sharp texture may promote the grain convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas, W.M., Int. Patent No. PCT/GB92/02203. Friction Stir Butt Welding, 1991.

  2. Mishra, R.S. and Ma, Z.Y., Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, vol. 50, pp. 1–78. doi https://doi.org/10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  3. Nandan, R., DebRoy, T., and Bhadeshia, H.K.D.H., Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties, Progr. Mater. Sci., 2008, vol. 53, pp. 980–1023. doi https://doi.org/10.1016/j.pmatsci.2008.05.001

    Article  Google Scholar 

  4. Park, S.H.C., Sato, Y.S., and Kokawa, H., Basal Plane Texture and Flow Pattern in Friction Stir Weld of a Magnesium Alloy, Metall. Mater. Trans. A, 2003, vol. 34, pp. 987–994. doi https://doi.org/10.1007/s11661-003-0228-4

    Article  Google Scholar 

  5. Colligan, K., Material Flow Behavior during Friction Stir Welding, Weld. J., 1999, vol. 78, no. 7, pp. 229–237.

    Google Scholar 

  6. Rhodes, C.G., Mahoney, M.W., Bingel, W.H., and Calabrese, M., Fine-Grain Evolution in Friction-Stir Processed 7050 Aluminum, Scripta Mater., 2003, vol. 48, pp. 1451–1455. doi https://doi.org/10.1016/S1359-6462(03)00082-4

    Article  Google Scholar 

  7. Su, J.-Q., Nelson, T.W., and Sterling, C.J., Microstructure Evolution during FSW/FSP of High Strength Aluminum Alloys, Mater. Sci. Eng. A, 2005, vol. 405, pp. 277–286. doi https://doi.org/10.1016/j.msea.2005.06.009

    Article  Google Scholar 

  8. Su, J.-Q., Nelson, T.W., McNelley, T.R., and Mishra, R.S., Development of Nanocrystalline Structure in Cu during Friction Stir Processing (FSP), Mater. Sci. Eng. A, 2011, vol. 528, pp. 5458–5464. doi https://doi.org/10.1016/j.msea.2011.03.043

    Article  Google Scholar 

  9. Liu, X.C., Sun, Y.F., and Fujii, H., Clarification of Microstructure Evolution of Aluminum during Friction Stir Welding Using Liquid CO2 Rapid Cooling, Mater. Design, 2017, vol. 129, pp. 151–163. doi https://doi.org/10.1016/j.matdes.2017.05.013

    Article  Google Scholar 

  10. Xu, N., Ueji, R., and Fujii, H., Enhanced Mechanical Properties of 70/30 Brass Joint by Rapid Cooling Friction Stir Welding, Mater. Sci. Eng. A, 2014, vol. 610, pp. 132–138. doi https://doi.org/10.1016/j.msea.2014.05.037

    Article  Google Scholar 

  11. Xu, N., Ueji, R., and Fujii, H., Dynamic and Static Change of Grain Size and Texture of Copper during Friction Stir Welding, J. Mater. Proc. Technol., 2016, vol. 232, pp. 90–99. doi https://doi.org/10.1016/j.jmatprotec.2016.01.021

    Article  Google Scholar 

  12. Xu, N., Ueji, R., Morisada, Y., and Fujii, H., Modification of Mechanical Properties of Friction Stir Welded Cu Joint by Additional Liquid CO2 Cooling, Mater. Design, 2014, vol. 56, pp. 20–25. doi https://doi.org/10.1016/j.matdes.2013.10.076

    Article  Google Scholar 

  13. Liu, F.C. and Nelson, T.W., In-Situ Material Flow Pattern Around Probe during Friction Stir Welding of Austenitic Stainless Steel, Mater. Design, 2016, vol. 110, pp. 354–364. doi https://doi.org/10.1016/j.matdes.2016.07.147

    Article  Google Scholar 

  14. Liu, F.C. and Nelson, T.W., In-Situ Grain Structure and Texture Evolution during Friction Stir Welding of Austenite Stainless Steel, Mater. Design, 2017, vol. 115, pp. 467–478. doi https://doi.org/10.1016/j.matdes.2016.11.066

    Article  Google Scholar 

  15. Mironov, S., Sato, Y.S., and Kokawa, H., Microstructural Evolution during Friction Stir-Processing of Pure Iron, Acta Mater., 2008, vol. 56, pp. 2602–2614. doi https://doi.org/10.1016/j.actamat.2008.01.040

    Article  Google Scholar 

  16. Mironov, S., Zhang, Y., Sato, Y.S., and Kokawa, H., Development of Grain Structure in β-Phase Field during Friction Stir Welding of Ti-6Al-4V Alloy, Scripta Mater., 2008, vol. 59, pp. 27–30. doi https://doi.org/10.1016/j.scriptamat.2008.02.014

    Article  Google Scholar 

  17. Pilchak, A.L., Tang, W., Sahiner, H., Reynolds, A.P., and Williams, J.C., Microstructure Evolution during Friction Stir Welding of Mill-Annealed Ti-6Al-4V, Metall. Mater. Trans. A, 2011, vol. 42, pp. 745–762.

    Article  Google Scholar 

  18. Mironov, S., Sato, Y.S., and Kokawa, H., Microstructural Evolution during Friction Stir Welding of Ti-15V-3Cr-3Al-3Sn Alloy, Mater. Sci. Eng. A, 2010, vol. 527, pp. 7498–7504. doi https://doi.org/10.1016/j.msea.2010.08.074

    Article  Google Scholar 

  19. Bay, B., Hansen, M., Hughes, D.A., and KuhlmannWilsdorf, D., Evolution of FCC Deformation Structures in Polyslip, Acta Metall. Mater., 1992, vol. 40, pp. 205–219. doi https://doi.org/10.1016/0956-7151(92)90296-Q

    Article  ADS  Google Scholar 

  20. Hughes, D.A. and Hansen, N., High Angle Boundaries Formed by Grain Subdivision Mechanisms, Acta Mater., 1997, vol. 45, pp. 3871–3886. doi https://doi.org/10.1016/S13596454(97)00027-X

    Article  Google Scholar 

  21. Hansen, N. and Jensen, D.J., Development of Microstructure in Face-Centered Cubic Metals during Cold Work, Philos. Trans. R. Soc. Lond. A, 1999, vol. 357, pp. 1447–1469. doi https://doi.org/10.1098/rsta.1999.0384

    Article  ADS  Google Scholar 

  22. Mironov, S., Inagaki, K., Sato, Y.S., and Kokawa, H., Effect of Welding Temperature on Microstructure of Friction-Stir Welded Aluminum Alloy 1050, Metall. Mater. Trans. A, 2015, vol. 46, pp. 783–790. doi https://doi.org/10.1007/s11661-014-2651-0

    Article  Google Scholar 

  23. Fonda, R.W., Bingert, J.F., and Colligan, K.J., Development of Grain Structure during Friction Stir Welding, Scripta Mater., 2004, vol. 51, pp. 243–248. doi https://doi.org/10.1016/j.scriptamat.2004.04.017

    Article  Google Scholar 

  24. Jata, K.V. and Semiatin, S.L., Continuous Dynamic Recrystallization during Friction Stir Welding of High Strength Aluminum Alloys, Scripta Mater., 2000, vol. 43, pp. 743–749. doi https://doi.org/10.1016/S1359-6462(00)00480-2

    Article  Google Scholar 

  25. Fonda, R.W. and Bingert, J.F., Precipitation and Grain Refinement in a 2195 Al Friction Stir Weld, Metall. Mater. Trans. A, 2006, vol. 37, pp. 3593–3604. doi https://doi.org/10.1007/s11661-006-1054-2

    Article  Google Scholar 

  26. Prangnell, P.B. and Heason, C.P., Grain Structure Formation during Friction Stir Welding Observed by the “Stop Action Technique”, Acta Mater., 2005, vol. 53, pp. 3179–3192. doi https://doi.org/10.1016/j.actamat.2005.03.044

    Article  Google Scholar 

  27. Su, J.-Q., Nelson, T.W., and Sterling, C.J., Grain Refinement of Aluminum Alloys by Friction Stir Processing, Philos. Mag., 2006, vol. 86, pp. 1–24. doi https://doi.org/10.1080/14786430500267745

    Article  ADS  Google Scholar 

  28. Suhuddin, U.F.H.R., Mironov, S., Sato, Y.S., and Kokawa, H., Grain Structure and Texture Evolution during Friction Stir Welding of Thin 6016 Aluminum Alloy Sheets, Mater Sci. Eng. A, 2010, vol. 527, pp. 1962–1969. doi https://doi.org/10.1016/j.msea.2009.11.029

    Article  Google Scholar 

  29. Yi, D., Mironov, S., Sato, Y.S., and Kokawa, H., Effect of Cooling Rate on Microstructure of Friction Stir Welded AA1100 Aluminum Alloy, Philos. Mag., 2016, vol. 96, pp. 1965–1977. doi https://doi.org/10.1080/14786435.2016.1185186

    Article  ADS  Google Scholar 

  30. Mironov, S., Sato, Y.S., Kokawa, H., Inoue, H., and Tsuge, S., Structural Response of Superaustenitic Stainless Steel to Friction Stir Welding, Acta Mater., 2011, vol. 59, pp. 5472–5481. doi https://doi.org/10.1016/j.actamat.2011.05.021

    Article  Google Scholar 

  31. Jeon, J., Mironov, S., Sato, Y.S., Kokawa, H., Park, S.H.C., and Hirano, S., Friction Stir Spot Welding of Single-Crystal Austenitic Stainless Steel, Acta Mater., 2011, vol. 59, pp. 7439–7449. doi https://doi.org/10.1016/j.actamat.2011.09.013

    Article  Google Scholar 

  32. Jeon, J., Mironov, S., Sato, Y.S., Kokawa, H., Park, S.H.C., and Hirano, S., Grain Structure Development during Friction Stir Welding of Single-Crystal Austenitic Stainless Steel, Metall. Mat. Trans A, 2013, vol. 44, pp. 3157–3166. doi https://doi.org/10.1007/s11661-013-1692-0

    Article  Google Scholar 

  33. Cui, H.B., Xie, G.M., Luo, Z.A., Ma, J., Wang, G.D., and Mishra, R.D.K., Microstructural Evolution and Mechanical Properties of the Stir Zone in Friction Stir Processed AISI201 Stainless Steel, Mater. Design, 2016, vol. 106, pp. 463–475. doi https://doi.org/10.1016/j.matdes.2016.05.106

    Article  Google Scholar 

  34. Hajian, M., Abdollah-zadeh, A., Rezaei-Nejad, S.S., Assadi, H., Hadavi, S.M.M., Chung, K., and Shokouhimehr, M., Microstructure and Mechanical Properties of Friction Stir Processed AISI 316L Stainless Steel, Mater. Design, 2015, vol. 67, pp. 82–94. doi https://doi.org/10.1016/j.matdes.2014.10.082

    Article  Google Scholar 

  35. Mironov, S., Inagaki, K., Sato, Y.S., and Kokawa, H., Development of Grain Structure during Friction-Stir Welding of Cu-30Zn Brass, Philos. Mag., 2014, vol. 94, pp. 3137–3147. doi https://doi.org/10.1080/14786435.2014.951712

    Article  ADS  Google Scholar 

  36. Xu, N., Neji, R., and Fujii, H., Enhanced Mechanical Properties of 70/30 Brass Joint by Rapid Cooling Friction Stir Welding, Mater. Sci. Eng. A, 2014, vol. 610, pp. 132–138. doi https://doi.org/10.1016/j.msea.2014.05.037

    Article  Google Scholar 

  37. Heidarzadeh, A., Saeid, T., and Klemm, V., Microstructure, Texture, and Mechanical Properties of Friction Stir Welded Commercial Brass Alloy, Mater. Character., 2016, vol. 119, pp. 84–91. doi https://doi.org/10.1016/j.matchar.2016.07.009

    Article  Google Scholar 

  38. Salishchev, G., Mironov, S., Zherebtsov, S., and Belyakov, A., Changes in Misorientations of Grain Boundaries in Titanium during Peformation, Mater. Character., 2010, vol. 61, pp. 732–739. doi https://doi.org/10.1016/j.matchar.2010.04.005

    Article  Google Scholar 

  39. Montheillet, F., Gilormini, P., and Jonas, J.J., Relation between Axial Stresses and Texture Pevelopment during Torsion: A Simplified Theory, Acta Metall., 1985, vol. 33, pp. 705–717. doi https://doi.org/10.1016/0001-6160(85)90035-5

    Article  Google Scholar 

  40. Mironov, S., Inagaki, K., Sato, Y.S., and Kokawa, H., Microstructural 1volution of Pure Copper during Friction-Stir Welding, Philos. Mag., 2015, vol. 95, pp. 367–381. doi https://doi.org/10.1080/14786435.2015.1006293

    Article  ADS  Google Scholar 

  41. Mironov, S., Onuma, T., Sato, Y.S., and Kokawa, H., Microstructure 1volution during Friction-Stir Welding of AZ31 Magnesium Alloy, Acta Mater., 2015, vol. 100, pp. 301–312. doi https://doi.org/10.1016/j.actamat.2015.08.066

    Article  Google Scholar 

  42. Suhuddin, N.F.H.R., Mironov, S., Sato, Y.S., Kokawa, H., and Lee, C.-W., Grain Structure Evolution during Friction-Stir Welding of AZ31 Magnesium Alloy, Acta Mater., 2009, vol. 57, pp. 5406–5418. doi https://doi.org/10.1016/j.actamat.2009.07.041

    Article  Google Scholar 

  43. Feng, A.H. and Ma, Z.Y., Microstructural Evolution of Cast Mg-Al-Zn during Friction Stir Processing and Subsequent Aging, Acta Mater., 2009, vol. 57, pp. 4248–4260. doi https://doi.org/10.1016/j.actamat.2009.05.022

    Article  Google Scholar 

  44. Chen, J., Fujii, H., Sun, Y., Morisada, Y., Kondoh, K., and Hashimoto, K., Effect of Grain Size on the Microstructure and Mechanical Properties of Friction Stir Welded Non-Combustive Magnesium Alloys, Mater. Sci. Eng. A, 2012, vol. 549, pp. 176–184. doi https://doi.org/10.1016/j.msea.2012.04.030

    Article  Google Scholar 

  45. Mironov, S., Yang, Q., Takahashi, H., Takahashi, I., Okamoto, K., Sato, Y.S., and Kokawa, H., Specific Character of Material Flow in Near-Surface Layer during Friction Stir Processing of AZ31 Magnesium Alloy, Metall. Mater. Trans. A, 2010, vol. 41, pp. 1016–1024. doi https://doi.org/10.1007/s11661-009-0158-x

    Article  Google Scholar 

  46. Mironov, S., Motohashi, Y., Kaibyshev, R., Somekawa, H., Mukai, T., and Tsuzaki, K., Development of FineGrained Structure Caused by Friction Stir Welding Process of a ZK60A Magnesium Alloy, Mater. Trans., 2009, vol. 50, pp. 610–617. doi https://doi.org/10.2320/matertrans.MRA2008192

    Article  Google Scholar 

  47. Chai, F., Zhang, D., Li, Y., and Zhang, W., Microstructure Evolution and Mechanical Properties of a Submerged Friction-Stir-Processed AZ91 Magnesium Alloy, J. Mater. Sci., 2015, vol. 50, pp. 3212–3225. doi https://doi.org/10.1007/s10853-015-8887-2

    Article  ADS  Google Scholar 

  48. Mironov, S., Sato, Y.S., and Kokawa, H., Development of Grain Structure during Friction Stir Welding of Pure Titanium, Acta Mater., 2009, vol. 57, pp. 4519–4528. doi https://doi.org/10.1016/j.actamat.2009.06.020

    Article  Google Scholar 

  49. Sato, Y.S., Nagahama, Y., Mironov, S., Kokawa, H., Park, S.H.C., and Hirano, S., Microstructural Studies of Friction Stir Welded Zircaloy-4, Scripta Mater., 2012, vol. 67, pp. 241–244. doi https://doi.org/10.1016/j.scriptamat.2012.04.029

    Article  Google Scholar 

Download references

Funding

One of the coauthors (S. Mironov) would like to acknowledge the financial support from the Russian Science Foundation, grant No. 19-49-02001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mironov.

Additional information

Russian Text © The Author(s), 2019, published in Fizicheskaya Mezomekhanika, 2019, Vol. 22, No. 1, pp. 5–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, S., Sato, Y.S. & Kokawa, H. Grain Structure Evolution during Friction-Stir Welding. Phys Mesomech 23, 21–31 (2020). https://doi.org/10.1134/S1029959920010038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959920010038

Keywords

Navigation