Skip to main content
Log in

Relationship Between Solidification Microstructure and Hot Cracking Susceptibility for Continuous Casting of Low-Carbon and High-Strength Low-Alloyed Steels: A Phase-Field Study

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz–Drezet–Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Rappaz, J-M. Drezet, and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 449-55.

    Article  CAS  Google Scholar 

  2. J.M. Drezet, M. Gremaud, R. Graf, and M. Gäumann: in Proceedings of 5th European Cont. Casting Conference, Birmingham, 2003, pp. 755–63.

  3. P.-D. Grasso, J.-M. Drezet, and M. Rappaz: J. Miner. Met. Mater. Soc. (JOM), 2002, http://www.tms.org/pubs/journals/JOM/jom.htm.

  4. D.G. Eskin, Suyitno, and L. Katgerman: Prog. Mater. Sci., 2004, vol. 49, pp. 629–711.

  5. T.W. Clyne and G.J. Davies: Br. Foundryman, 1981, vol 4, pp. 65-73.

    Google Scholar 

  6. D. Raabe: Annu. Rev. Mater. Res., 2002, vol. 32, pp. 53–76.

    Article  CAS  Google Scholar 

  7. H. Yang, C. Wu, H. Li, and X.G. Fan: Sci. China Technol. Sci. 2011, vol. 54, pp. 2107-18.

    Article  Google Scholar 

  8. Ch.-A. Gandin and M. Rappaz: Acta Metall. Mater. 1994, vol. 42, pp. 2233-46.

    Article  CAS  Google Scholar 

  9. A. Wheeler, W.J. Boettinger, and G.B Mc Fadden: Phys. Rev. E, 1993, vol. 47, pp. 1893-1909.

    Article  CAS  Google Scholar 

  10. A. Karma, Y.H. Lee, and M. Plapp: Phys. Rev. E, 2000, vol. E61, pp. 3996-4006.

    Article  Google Scholar 

  11. R. Kobayashi: Physica D, 1993, vol. 63, pp. 410-23.

    Article  Google Scholar 

  12. S.G. Kim, W.T. Kim, and T. Suzuki: Phys. Rev. E, 1999, vol. 60, pp. 7186-97.

    Article  CAS  Google Scholar 

  13. I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, and J.L.L. Rezende: Physica D, 1996, vol. 94, pp 135-47.

    Article  Google Scholar 

  14. J. Tiaden, B. Nestler, H.J. Diepers, and I. Steinbach: Physica D, 1998, vol. 115, pp. 73-86.

    Article  CAS  Google Scholar 

  15. I. Steinbach and F. Pezolla: Physica D, 1999, vol. 134, pp. 385-93.

    Article  Google Scholar 

  16. B. Nestler and A.A. Wheeler: Physica D, 2000, vol. 138, pp. 114-33.

    Article  CAS  Google Scholar 

  17. N. Saunders, A. Miodownik: CALPHAD Calculation of Phase Diagrams: A Comprehensive Guide. Elsevier, Amsterdam, 1998.

    Google Scholar 

  18. Themo-Calc Software: http://www.thermocalc.se. Accessed 14 Jan 2013.

  19. http://www.micress.de. Accessed 14 Jan 2013.

  20. www.access-technology.de. Accessed 14 Jan 2013.

  21. B. Böttger, U. Grafe, D. Ma, and S.G. Fries: Mater. Sci. Technol., 2000, vol. 16, pp. 1425-28.

    Article  Google Scholar 

  22. J. Eiken, B. Böttger, and I. Steinbach: Phys. Rev. E, 2006, vol. 73, 066122.

    Article  CAS  Google Scholar 

  23. J. Rösler, M. Götting, D. Del Genovese, B. Böttger, R. Kopp, M. Wolske, F. Schubert, H.J. Penkalla, T. Seliga, A. Thoma, A. Scholz, and C. Berger: Adv. Eng. Mater., 2003, vol. 5(7), pp. 469-83.

  24. N. Warnken, D. Ma, M. Mathes, and I. Steinbach: Mater. Sci. Eng. A, 2005, vol. 413-414, p. 267-71.

    Google Scholar 

  25. B. Böttger, J. Eiken, and I. Steinbach: Acta Mater., 2006, vol. 54, pp. 2697-2704.

    Article  Google Scholar 

  26. B. Böttger, J. Eiken, M. Ohno, G. Klaus, M. Fehlbier, R. Schmid-Fetzer, I. Steinbach, and A. Bührig-Polaczek: Adv. Eng. Mater., 2006, vol. 8(4), pp. 241-27.

    Article  Google Scholar 

  27. I. Steinbach and M. Apel: Acta Mater., 2007, vol. 55, pp. 4817-22.

    Article  CAS  Google Scholar 

  28. K. Nakajima, M. Apel, and I. Steinbach: Acta Mater., 2006, vol. 54, pp. 3665-72.

    Article  CAS  Google Scholar 

  29. B. Böttger, M. Apel, J. Eiken, P. Schaffnit, and I. Steinbach: Steel Res. Int., 2008, vol. 79(8), pp. 608-16.

    Google Scholar 

  30. D. Senk, S. Stratemeier, B. Böttger, E. Subasic, K. Göhler, and I. Steinbach: Adv. Eng. Mater., 2010, vol. 12(4), pp. 94-100.

    Article  CAS  Google Scholar 

  31. B. Böttger, S. Stratemeier, E. Subasic, K. Göhler, I. Steinbach, and D. Senk: Adv. Eng. Mater., 2010, vol. 12(4), pp. 101-09.

    Article  Google Scholar 

  32. Internal Statistical Analysis 2007–2008, Corus, IJmuiden, The Netherlands.

  33. B. Böttger, J. Eiken, and M. Apel: J. Comput. Phys., 2009, vol. 228, pp. 6784-95.

    Article  Google Scholar 

  34. B. Santillana, L.C. Hibbeler, B.G. Thomas, A.A. Kamperman, and W. van der Knoop: ISIJ Int., 2011, vol. 48(10), pp. 1380-88.

    Article  Google Scholar 

  35. http://www.efunda.com. Accessed 14 Jan 2013.

  36. A. Karma and W.J. Rappel: Phys. Rev. E, 1997, vol. 57, pp. 4323-49.

    Article  Google Scholar 

  37. R. Almgren: J. Appl. Math., 1999, vol. 59, pp. 2086-2107.

    Google Scholar 

  38. S.G. Kim: Acta Mater., 2007, vol. 55, p. 4391-99.

    Article  CAS  Google Scholar 

  39. A. Choudhury and B. Nestler: Phys. Rev. E, 2012, vol. 85, 021602.

    Article  Google Scholar 

  40. J. Eiken: Mater. Sci. Eng., 2012, vol. 33, 012105.

    Google Scholar 

  41. I. Maxwell and A. Hellawell: Acta Metall., 1975, vol. 23, pp. 229-37.

    Article  CAS  Google Scholar 

  42. T.E. Quested and A.L. Greer: Acta Mater., 2004, vol. 52, pp. 3859-68.

    Article  CAS  Google Scholar 

  43. A.L. Greer, P.S. Cooper, M.W. Meredith, W. Schneider, P. Schumacher, J.A. Spittle, and A. Tronche: Adv. Eng. Mater., 2003, vol. 5, pp. 81-91.

    Article  CAS  Google Scholar 

  44. B. Böttger, M. Apel, B. Santillana, and D.G. Eskin: Mater. Sci. Eng., 2012, vol. 33, 012107.

    Google Scholar 

  45. B. Santillana, B.G. Thomas, G. Botman, and E. Dekker: in Conference Contribution to the 7th ECCC, held in Düsseldorf, Germany on 27 June–1 July 2011.

  46. R. Lagneborg, T. Siwecki, S. Zajac, and B. Hutchinson: Scandinavian Journal of Metallurgy, 1999, vol. 28(5), pp. 186-241.

    CAS  Google Scholar 

  47. F. Ma, G. Wen, P. Tang, G. Xu, F. Mei, and W. Wang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 81-86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Böttger.

Additional information

Manuscript submitted January 14, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böttger, B., Apel, M., Santillana, B. et al. Relationship Between Solidification Microstructure and Hot Cracking Susceptibility for Continuous Casting of Low-Carbon and High-Strength Low-Alloyed Steels: A Phase-Field Study. Metall Mater Trans A 44, 3765–3777 (2013). https://doi.org/10.1007/s11661-013-1732-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1732-9

Keywords

Navigation