Skip to main content
Log in

Corrosion Behavior of Heat-Resistant Materials in High-Temperature Carbon Dioxide Environment

  • Nuclear Materials, Oxidation, Supercritical CO2, and Corrosion Behavior
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The corrosion behavior of several heat-resistant steels and alloys, viz. T24, T91, Super 304H, and Haynes 282, in carbon dioxide environment at 600°C has been investigated. X-ray diffraction analysis, scanning electron microscopy, and glow-discharge optical emission spectrometry were employed to characterize the corrosion products. The results showed that the corrosion kinetics of the investigated materials followed a parabolic law. Super 304H and Haynes 282 exhibited superior corrosion resistance due to their higher Cr and Ni contents. Severe carburization of T91 was found because of the quick diffusion rate of carbon or carbon ion, which was detected underneath the oxide layers. In addition to internal carburization of metal, carbon was also found at the surface of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Angelino, J. Eng. Gas Turbines Power 90, 287 (1968).

    Article  Google Scholar 

  2. P. Mathieu and R. Nihart, J. Eng. Gas Turbines Power 121, 116 (1999).

    Article  Google Scholar 

  3. B.D. Iverson, T.M. Conboy, J.J. Pasch, and A.M. Kruizenga, Appl. Energy 111, 957 (2013).

    Article  Google Scholar 

  4. J.E. Cha, T.H. Lee, J.H. Eoh, S.H. Seong, S. Kim, and D.E. Kim, Nucl. Eng. Technol. 41, 1025 (2009).

    Article  Google Scholar 

  5. X. Wang, G. Xi, and Z. Wang, Proc. Inst. Mech. Eng. Part A J. Power 220, 589 (2006).

    Article  Google Scholar 

  6. T.D. Nguyen, J. Zhang, and D.J. Young, Oxid. Met. 87, 541 (2017).

    Article  Google Scholar 

  7. T.D. Nguyen, J. Zhang, and D.J. Young, Corros. Sci. 112, 110 (2016).

    Article  Google Scholar 

  8. T.D. Nguyen, J. Zhang, and D.J. Young, Mater. High Temp. 32, 16 (2015).

    Article  Google Scholar 

  9. D.J. Young and B.A. Pint, Oxid. Met. 66, 137 (2006).

    Article  Google Scholar 

  10. B.A. Pint, R.G. Brese, and J.R. Keiser, Mater. Corros. 68, 151 (2017).

    Article  Google Scholar 

  11. B.A. Pint and J.R. Keiser, JOM 67, 2615 (2015).

    Article  Google Scholar 

  12. I.G. Wright, B.A. Pint, J.P. Shingledecker, and D. Thimsen, in ASME Paper #GT2013-94941, Presented at the International Gas Turbine & Aeroengine Congress & Exhibition (San Antonio, TX, 2013)

  13. A. Pfennig and R. Bäßler, Corros. Sci. 51, 931 (2009).

    Article  Google Scholar 

  14. F. Rouillard, F. Charton, and G. Moine, Corrosion 67, 095001 (2011).

    Article  Google Scholar 

  15. G.R. Holcomb, C. Carney, and O.N. Dogan, Corros. Sci. 109, 22 (2016).

    Article  Google Scholar 

  16. V. Firouzdor, K. Sridharan, G. Cao, M. Anderson, and T.R. Allen, Corros. Sci. 69, 281 (2013).

    Article  Google Scholar 

  17. W.J. Quadakkers, T. Olszewski, J. Piron-Abellan, V. Shemet, and L. Singheiser, Mater. Sci. Forum 696, 194 (2011).

    Article  Google Scholar 

  18. F. Rouillard, G. Moine, M. Tabarant, and J.C. Ruiz, Oxid. Met. 77, 57 (2012).

    Article  Google Scholar 

  19. G. Cao, V. Firouzdor, K. Sridharan, M. Anderson, and T.R. Allen, Corros. Sci. 60, 246 (2012).

    Article  Google Scholar 

  20. S.B. Newcomb and W.M. Stobbs, Oxid. Met. 26, 431 (1986).

    Article  Google Scholar 

  21. T. Furukawa and F. Rouillard, Prog. Nucl. Energy 82, 136 (2015).

    Article  Google Scholar 

  22. Y. Yang, L. Zhu, Q. Wang, and C. Zhu, Mater. Sci. Eng. A 608, 164 (2014).

    Article  Google Scholar 

  23. Z. Liang, P.M. Singh, Q. Zhao, and Y. Wang, Oxid. Met. 84, 291 (2015).

    Article  Google Scholar 

  24. J. Żurek, E. Wessel, L. Niewolak, F. Schmitz, T.U. Kern, and L. Singheiser, Corros. Sci. 46, 2301 (2004).

    Article  Google Scholar 

  25. R. Viswanathan, J. Sarver, and J.M. Tanzosh, J. Mater. Eng. Perform. 15, 255 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Collaborative Fund of China (No. 6141A02022501), the Postdoctoral Fund (2017M620451, 2018T111061), and the Shaanxi Province Postdoctoral Research Grant (2017BSHEDZZ41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Yu, M., Gui, Y. et al. Corrosion Behavior of Heat-Resistant Materials in High-Temperature Carbon Dioxide Environment. JOM 70, 1464–1470 (2018). https://doi.org/10.1007/s11837-018-2975-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2975-0

Navigation