Skip to main content
Log in

High Temperature Corrosion Performance of HVOF and D-gun Formulated Cr3C2-NiCr and Rare Earth Element Doped Cr3C2-NiCr Coating on TP347H Austenite Steel

  • Original Research Article
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The present research evaluates the microstructure and hot corrosion performance of HVOF and D-gun sprayed Cr3C2-25NiCr, and ceria (0.4 wt.%) blended Cr3C2-25NiCr coatings on TP347H superheater tube material. All the specimens were subjected to Na2SO4-60%V2O5 environment for 50 cycles at 900 °C. The corroded samples were evaluated using thermogravimetric analysis, XRD, scanning electron microscopy with energy dispersive spectroscopy, and x-ray mapping. Moreover, the weight gain versus oxidation time and oxide scale growth rate was subsequently examined. Microstructural results revealed that the ceria-added coating with the D-gun method provided better coating features, such as microhardness, surface roughness, and microporosity than its counterparts. Among the four coatings, D-gun sprayed Ce 0.4 wt.% added Cr3C2-25NiCr coating (D2) proved to be better due to the thin and dense oxide scale of Cr2O3, Cr23C6, NiCr2O4, Ce2O3, and CeVO4. Moreover, the presence of ceria in the carbide coating reduces the development of the NiCr2O4 phase resulting in compact oxide scale of Cr2O3 developed on the coating surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Agarwal, A. Suhane, Study of boiler maintenance for enhanced reliability of system a review. Mater. Today: Proc. 4(2), 1542–1549 (2017). https://doi.org/10.1016/j.matpr.2017.01.177

    Article  Google Scholar 

  2. A. Agüero, P. Audigié, S. Rodríguez, V. Encinas-Sánchez, M.T. de Miguel, F.J. Pérez, Protective coatings for high temperature molten salt heat storage systems in solar concentration power plants. AIP Conf. Proc. 2033, 090001 (2018). https://doi.org/10.1063/1.5067095

    Article  CAS  Google Scholar 

  3. M.S. Alam, A.K. Das, Hot corrosion behavior of plasma-sprayed WC-CoCr coatings on AISI 316L steel substrate in Na2SO4-25% NaCl salt environment. High Temp. Corros. Mater. 99(5–6), 415–430 (2023). https://doi.org/10.1007/s11085-023-10162-6

    Article  CAS  Google Scholar 

  4. M. Bajt Leban, M. Vončina, T. Kosec, R. Tisu, M. Barborič, J. Medved, Comparison of cycling high temperature corrosion at 650 °C in the presence of NaCl of various austenitic stainless steels. Oxid. Metals. (2022). https://doi.org/10.1007/s11085-022-10138-y

    Article  Google Scholar 

  5. G. Balakrishnan, O.A. Petrenko, M.R. Lees, D.M.K. Paul, Single crystals of the anisotropic Kagomé staircase compounds Ni3V2O8 and Co3V2O8. J. Phys. Condens. Matter. 16(29), L347–L350 (2004). https://doi.org/10.1088/0953-8984/16/29/L02

    Article  CAS  Google Scholar 

  6. V. Balaram, Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 10(4), 1285–1303 (2019). https://doi.org/10.1016/j.gsf.2018.12.005

    Article  CAS  Google Scholar 

  7. R.S. Bangari, S. Sahu, P.C. Yadav, Comparative evaluation of hot corrosion resistance of nanostructured AlCrN and TiAlN coatings on cobalt-based superalloys. J. Mater. Res. 33(8), 1023–1031 (2018). https://doi.org/10.1557/jmr.2018.53

    Article  CAS  Google Scholar 

  8. M. Benegra, M. Magnani, H. Goldenstein, O. Maranho, G. Pintaude, Abrasion and corrosion resistance of new Ni–based coating deposited by HVOF thermal spray process. Surf. Eng. 26(6), 463–468 (2010). https://doi.org/10.1179/026708410X12550773058144

    Article  CAS  Google Scholar 

  9. S.S. Chatha, H.S. Sidhu, B.S. Sidhu, The effects of post-treatment on the hot corrosion behavior of the HVOF-sprayed Cr3C2-NiCr coating. Surf. Coat. Technol. 206(19–20), 4212–4224 (2012). https://doi.org/10.1016/j.surfcoat.2012.04.026

    Article  CAS  Google Scholar 

  10. L. Chen, Y. Zhao, C. Guan, T. Yu, Effects of CeO2 addition on microstructure and properties of ceramics reinforced Fe-based coatings by laser cladding. Int. J. Adv. Manuf. Technol. 115(7–8), 2581–2593 (2021). https://doi.org/10.1007/s00170-021-07297-8

    Article  Google Scholar 

  11. J.L. Cocking, G.R. Johnston, Characterisation of Oxidised Surfaces, in Surface Analysis Methods in Materials Science. ed. by D. John O’Connor, B.A. Sexton, C. Roger St, Smart, (Springer Berlin Heidelberg, Berlin, Heidelberg, 2003), p.455–471. https://doi.org/10.1007/978-3-662-05227-3_19

    Chapter  Google Scholar 

  12. K. Derelizade, A. Rincon, F. Venturi, R.G. Wellman, A. Kholobysov, T. Hussain, High temperature (900 °C) sliding wear of CrNiAlCY coatings deposited by high velocity oxy fuel thermal spray. Surface Coat. Technol. 432, 128063 (2022). https://doi.org/10.1016/J.SURFCOAT.2021.128063

    Article  CAS  Google Scholar 

  13. S. Deshpande, S. Sampath, H. Zhang, Mechanisms of oxidation and its role in microstructural evolution of metallic thermal spray coatings—Case study for Ni–Al. Surf. Coat. Technol. 200(18–19), 5395–5406 (2006). https://doi.org/10.1016/j.surfcoat.2005.07.072

    Article  CAS  Google Scholar 

  14. N. Di Salvia, M.P. Malavasi, G. Di Salvia, A. Vaccari, Formation of Ni and Mg vanadates during the flameless oxy-combustion of heavy fuels. Fuel Process. Technol. 138, 534–539 (2015). https://doi.org/10.1016/j.fuproc.2015.06.033

    Article  CAS  Google Scholar 

  15. N. Di Salvia, M.P. Malavasi, G. Di Salvia, A. Vaccari, Formation of Ni and Mg vanadates during the flameless oxy-combustion of heavy fuels. Fuel Proc. Technol. 138, 534–539 (2015). https://doi.org/10.1016/j.fuproc.2015.06.033

    Article  CAS  Google Scholar 

  16. H. Du, W. Hua, J. Liu, J. Gong, C. Sun, L. Wen, Influence of process variables on the qualities of detonation gun sprayed WC–Co coatings. Mater. Sci. Eng. A. 408(1), 202–210 (2005). https://doi.org/10.1016/j.msea.2005.08.008

    Article  CAS  Google Scholar 

  17. H. Gada, D. Mudgal, B. Ahmad, Experimental evaluation of high temperature corrosion performance of 75Ni25Cr coated and bare 347H SS in air and simulated husk fired boiler environment. J. Phys. Conf. Ser. 1240(1), 012129 (2019). https://doi.org/10.1088/1742-6596/1240/1/012129

    Article  CAS  Google Scholar 

  18. J. Gao, Z. Tang, C. Wang, M. Guo, Y. Cui, Microstructure, mechanical and oxidation characteristics of detonation gun and HVOF sprayed MCrAlYX coatings. Trans. Nonferrous Metals Soc. China. 25(3), 817–823 (2015). https://doi.org/10.1016/S1003-6326(15)63668-8

    Article  CAS  Google Scholar 

  19. F. Ghadami, A. Zakeri, A.S.R. Aghdam, R. Tahmasebi, Structural characteristics and high-temperature oxidation behavior of HVOF sprayed nano-CeO2 reinforced NiCoCrAlY nanocomposite coatings. Surf. Coat. Technol. 373, 7–16 (2019). https://doi.org/10.1016/j.surfcoat.2019.05.062

    Article  CAS  Google Scholar 

  20. B. Grégoire, C. Oskay, T.M. Meißner, M.C. Galetz, Corrosion mechanisms of ferritic-martensitic P91 steel and Inconel 600 nickel-based alloy in molten chlorides. Part I: NaCl–KCl binary system. Solar Energy Mater. Solar Cells. 215, 110659 (2020). https://doi.org/10.1016/j.solmat.2020.110659

    Article  CAS  Google Scholar 

  21. N. Gupta, S.K. Singh, S.M. Pandey, Tribological characterisation of thermal sprayed CrC alloyed coating—A review. Adv. Mater. Process. Technol. 7(4), 660–683 (2021). https://doi.org/10.1080/2374068X.2020.1793262

    Article  Google Scholar 

  22. M. Hagarová, G. Baranová, M. Fujda, M. Matvija, P. Horňak, J. Bednarčík, D. Yudina, High temperature oxidation behavior of creep resistant steels in water vapour containing environments. Materials. 15(2), 616 (2022). https://doi.org/10.3390/ma15020616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Hao, B. Sun, H. Wang, High-temperature oxidation behavior of Fe–1Cr–0.2Si steel. Materials. 13(3), 509 (2020). https://doi.org/10.3390/ma13030509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J. He, M. Ice, E. Lavernia, Particle melting behavior during high-velocity oxygen fuel thermal spraying. J. Therm. Spray Technol. 10(1), 83–93 (2001). https://doi.org/10.1361/105996301770349547

    Article  CAS  Google Scholar 

  25. C. Howes, An overview of thermal spray processes. Mater. Technol. 11(5), 188–191 (1996). https://doi.org/10.1080/10667857.1996.11752697

    Article  Google Scholar 

  26. A.M. Huntz, Stresses in NiO, Cr2O3 and Al2O3 oxide scales. Mater. Sci. Eng. A. 201(1–2), 211–228 (1995). https://doi.org/10.1016/0921-5093(94)09747-X

    Article  Google Scholar 

  27. M.H. Hussin, N.A. Che Lah, Selective oxide deposition on fe-based alloys in dry high temperature environment—a review. J. Adv. Res. Fluid Mech. Thermal Sci. 72(2), 25–40 (2020). https://doi.org/10.37934/arfmts.72.2.2540

    Article  Google Scholar 

  28. A. Inam, M.A. Raza, M.A. Hafeez, S.B. Shah, M. Ishtiaq, M.H. Hassan, M. Irfan, A. Nasik, I. Siddique, O.M. Butt, A. Maqbool, W. Haider, Effect of voltage and spray–off distance of electric-arc spray technique on surface properties of nickel–chrome (Ni–Cr) coating developed on 304L stainless steel. Mater. Res. Express. 7(1), 016525 (2020). https://doi.org/10.1088/2053-1591/ab6112

    Article  CAS  Google Scholar 

  29. J. Jedliński, M.J. Bennett, H.E. Evans, Experimental data on the spallation of protective oxide scales: a brief literature survey. Mater. High Temp. 12(2–3), 169–175 (1994). https://doi.org/10.1080/09603409.1994.11689483

    Article  Google Scholar 

  30. K.P. Jonnalagadda, S. Mahade, N. Curry, X.-H. Li, N. Markocsan, P. Nylén, S. Björklund, R.L. Peng, Hot corrosion mechanism in multi-layer suspension plasma sprayed Gd2Zr2O7/YSZ thermal barrier coatings in the presence of V2O5 + Na2SO4. J. Therm. Spray Technol. 26(1–2), 140–149 (2017). https://doi.org/10.1007/s11666-016-0486-5

    Article  CAS  Google Scholar 

  31. S. Kamal, R. Jayaganthan, S. Prakash, Hot corrosion behaviour of D-gun sprayed NiCoCrAlYTa coated superalloys at 900 °C in molten salt environment. Surf. Eng. 26(6), 453–462 (2010). https://doi.org/10.1179/026708410X12459349720132

    Article  CAS  Google Scholar 

  32. S. Kamal, R. Jayaganthan, S. Prakash, S. Kumar, Hot corrosion behavior of detonation gun sprayed Cr3C2–NiCr coatings on Ni and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900 °C. J. Alloy. Compd. 463(1–2), 358–372 (2008). https://doi.org/10.1016/j.jallcom.2007.09.019

    Article  CAS  Google Scholar 

  33. S. Kamal, K.V. Sharma, P. Srinivasa Rao, O. Mamat, Thermal Spray Coatings for Hot Corrosion Resistance, in Engineering Applications of Nanotechnology. ed. by V.S. Korada, B. Nor Hisham Hamid (Springer International Publishing, Cham, 2017), p.235–268. https://doi.org/10.1007/978-3-319-29761-3_10

    Chapter  Google Scholar 

  34. S. Kant, M. Kumar, V. Chawla, S. Singh, Study of high temperature oxidation behavior of wire arc sprayed coatings. Mater. Today: Proc. 21, 1741–1748 (2020). https://doi.org/10.1016/j.matpr.2020.01.226

    Article  CAS  Google Scholar 

  35. M. Kawakami, K.S. Goto, R.A. Rapp, Accelerated oxidation (Hot Corrosion) of alloys by molten salt. Trans. Iron Steel Inst. Japan. 20(9), 646–658 (1980). https://doi.org/10.2355/isijinternational1966.20.646

    Article  CAS  Google Scholar 

  36. P.R.L. Keating, D.O. Scanlon, G.W. Watson, The nature of oxygen states on the surfaces of CeO2 and La-doped CeO2. Chem. Phys. Lett. 608(May), 239–243 (2014). https://doi.org/10.1016/j.cplett.2014.05.094

    Article  CAS  Google Scholar 

  37. H. Kildahl, H. Cao, Y. Ding, Thermochemical splitting of carbon dioxide by lanthanum manganites - understanding the mechanistic effects of doping. Energy Storage and Saving. 1(4), 309–324 (2022). https://doi.org/10.1016/j.enss.2022.09.001

    Article  CAS  Google Scholar 

  38. M. Kumar, S. Kant, S. Kumar, Corrosion behavior of wire arc sprayed Ni-based coatings in extreme environment. Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab3bd8

    Article  Google Scholar 

  39. M. Kumar, D. Mudgal, L. Ahuja, Evaluation of high temperature oxidation performance of bare and coated T91 steel. Mater. Today: Proc. 28, 620–624 (2020). https://doi.org/10.1016/j.matpr.2019.12.232

    Article  CAS  Google Scholar 

  40. S. Kumar, M. Kumar, A. Handa, Combating hot corrosion of boiler tubes—A study. Eng. Fail. Anal. 94(May), 379–395 (2018). https://doi.org/10.1016/j.engfailanal.2018.08.004

    Article  CAS  Google Scholar 

  41. S. Kumar, M. Kumar, A. Handa, Comparative study of high temperature oxidation behavior and mechanical properties of wire arc sprayed Ni–Cr and Ni–Al coatings. Eng. Fail. Anal. 106(July), 104173 (2019). https://doi.org/10.1016/j.engfailanal.2019.104173

    Article  CAS  Google Scholar 

  42. S. Kumar, M. Kumar, A. Handa, Erosion corrosion behaviour and mechanical properties of wire arc sprayed Ni-Cr and Ni-Al coating on boiler steels in a real boiler environment. Mater. High Temp. 37(6), 370–384 (2020). https://doi.org/10.1080/09603409.2020.1810922

    Article  CAS  Google Scholar 

  43. B. Li, Z. Zhang, T. Liu, Z. Qiu, Y. Su, J. Zhang, C. Lin, L. Wang, Recent progress in functionalized coatings for corrosion protection of magnesium alloys—a review. Materials. 15(11), 3912 (2022). https://doi.org/10.3390/ma15113912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. X. Lian, J. Zhu, R. Wang, T. Liu, J. Xu, D. Xu, H. Dong, Effects of rare earth (Ce and La) on steel corrosion behaviors under wet-dry cycle immersion conditions. Metals. 10(9), 1–14 (2020). https://doi.org/10.3390/met10091174

    Article  CAS  Google Scholar 

  45. B.S. Lutz, N.M. Yanar, G.R. Holcomb, G.H. Meier, Fireside corrosion of alumina-forming austenitic (AFA) stainless steels. Oxid. Metals. 87(3), 575–602 (2016). https://doi.org/10.1007/S11085-016-9687-Z

    Article  Google Scholar 

  46. H.P. Lv, J. Wang, Y.G. Yan, Q.Z. An, P.L. Nie, B.D. Sun, Characterisation of detonation sprayed Mo–Co–Cr–B alloy coatings. Mater. Sci. Technol. 26(8), 950–955 (2010). https://doi.org/10.1179/026708309X12459430509373

    Article  CAS  Google Scholar 

  47. G. Madhu, K.M. Mrityunjaya Swamy, D.A. Kumar, C.D. Prasad, U. Harish, Evaluation of hot corrosion behavior of HVOF thermally sprayed Cr3C2-35NiCr coating on SS 304 boiler tube steel. AIP Conf. Proc. 1, 2316 (2021). https://doi.org/10.1063/5.0038279

    Article  CAS  Google Scholar 

  48. R.A. Mahesh, R. Jayaganthan, S. Prakash, Microstructural characterization and hardness evaluation of HVOF sprayed Ni–5Al coatings on Ni- and Fe-based superalloys. J. Mater. Process. Technol. 209(7), 3501–3510 (2009). https://doi.org/10.1016/j.jmatprotec.2008.08.009

    Article  CAS  Google Scholar 

  49. V. Mannava, A. SambasivaRao, M. Kamaraj, R.S. Kottada, Influence of two different salt mixture combinations of Na2SO4-NaCl-NaVO3 on hot corrosion behavior of Ni-base superalloy Nimonic263 at 800 °C. J. Mater. Eng. Perform. 28(2), 1077–1093 (2019). https://doi.org/10.1007/s11665-019-3866-4

    Article  CAS  Google Scholar 

  50. E. Medvedovski, Advanced ceramics and coatings for erosion-related applications in mineral and oil and gas production: a technical review. Int. J. Appl. Cer. Technol. 20(2), 612–659 (2022). https://doi.org/10.1111/ijac.14240

    Article  CAS  Google Scholar 

  51. R. Mittal, H. Singh, Evaluation of the behavior of D-gun spray coatings on T-11 boiler steel at high and moderate temperature. Mater. Today: Proc. 41, 893–901 (2021). https://doi.org/10.1016/j.matpr.2020.09.457

    Article  CAS  Google Scholar 

  52. T. Moriomoto, R. Oka, K. Minagawa, T. Masui, Novel near-infrared reflective black inorganic pigment based on cerium vanadate. RSC Adv. 12(26), 16570–16575 (2022). https://doi.org/10.1039/D2RA02483G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. D. Mudgal, S. Singh, S. Prakash, Evaluation of ceria-added Cr3C2-25(NiCr) coating on three superalloys under simulated incinerator environment. J. Therm. Spray Technol. 24(3), 496–514 (2015). https://doi.org/10.1007/s11666-014-0209-8

    Article  CAS  Google Scholar 

  54. H.P. Nielsen, F.J. Frandsen, K. Dam-Johansen, L.L. Baxter, The implications of chlorine-associated corrosion on the operation of biomass-fired boilers. Prog. Energy Combust. Sci. 26(3), 283–298 (2000). https://doi.org/10.1016/S0360-1285(00)00003-4

    Article  CAS  Google Scholar 

  55. Nilsson, E. A. A. (2017). Degradation mechanisms of heat resistant steel at elevated temperatures in an iron ore pelletizing industry. Eng. Failure Anal. (Vol. 110).

  56. A. Nouri, A. Sola, Powder morphology in thermal spraying. J. Adv. Manuf. Proc. 1(3), e10020 (2019). https://doi.org/10.1002/amp2.10020

    Article  CAS  Google Scholar 

  57. Q. Pang, Z.L. Hu, G.H. Wu, Preparation and oxidation performance of Y and Ce-modified Cr coating on open-cell Ni-Cr-Fe alloy foam by the pack cementation. J. Mater. Eng. Perform. 25(12), 5189–5200 (2016). https://doi.org/10.1007/s11665-016-2362-3

    Article  CAS  Google Scholar 

  58. X. Peng, Metallic coatings for high-temperature oxidation resistance, in Thermal Barrier Coatings. (Elsevier, 2011), p.53–74. https://doi.org/10.1533/9780857090829.1.53

    Chapter  Google Scholar 

  59. F. Pettit, Hot corrosion of metals and alloys. Oxid. Met. 76(1–2), 1–21 (2011). https://doi.org/10.1007/s11085-011-9254-6

    Article  CAS  Google Scholar 

  60. S. Phokha, E. Swatsitang, S. Maensiri, Room-temperature ferromagnetism in pure CeO2 nanoparticles prepared by a simple direct thermal decomposition. Electron. Mater. Lett. 11(6), 1012–1020 (2015). https://doi.org/10.1007/s13391-015-4164-4

    Article  CAS  Google Scholar 

  61. J. Pirso, M. Viljus, S. Letunovits, K. Juhani, Reactive carburizing sintering—A novel production method for high quality chromium carbide–nickel cermets. Int. J. Refract Metal Hard Mater. 24(3), 263–270 (2006). https://doi.org/10.1016/j.ijrmhm.2005.06.002

    Article  CAS  Google Scholar 

  62. M.J. Pomeroy, Coatings for gas turbine materials and long term stability issues. Mater. Des. 26(3), 223–231 (2005). https://doi.org/10.1016/j.matdes.2004.02.005

    Article  CAS  Google Scholar 

  63. D. Pradhan, G.S. Mahobia, K. Chattopadhyay, V. Singh, Severe hot corrosion of the superalloy IN718 in mixed salts of Na2SO4 and V2O5 at 700 °C. J. Mater. Eng. Perform. 27(8), 4235–4243 (2018). https://doi.org/10.1007/s11665-018-3501-9

    Article  CAS  Google Scholar 

  64. S. Purkayastha, D.K. Dwivedi, Abrasive and erosive wear performance of rare earth oxide doped Ni/WC coatings. J. Tribol. 136(1), 1–9 (2014). https://doi.org/10.1115/1.4025099

    Article  CAS  Google Scholar 

  65. A. Rahman, R. Jayaganthan, Study of nanostructured CeO2 coatings on superalloy. Surf. Eng. 32(10), 771–778 (2016). https://doi.org/10.1080/02670844.2016.1148381

    Article  CAS  Google Scholar 

  66. P. Rajendran, A. Muthuraj, N.E. Rajagounder, Review on CeO2 -based corrosion coatings. Trans. Ind. Ceramic Soc. 45, 1–17 (2022). https://doi.org/10.1080/0371750X.2022.2149623

    Article  Google Scholar 

  67. R.F. Reidy, R.L. Jones, Thermogravimetric analysis of the reaction of CeO2 with the NaVO3—SO3 system. J. Electrochem. Soc. 142(4), 1353–1357 (1995). https://doi.org/10.1149/1.2044177

    Article  CAS  Google Scholar 

  68. E. Rocca, L. Aranda, M. Moliere, P. Steinmetz, Nickel oxide as a new inhibitor of vanadium-induced hot corrosion of superalloys—comparison to MgO-based inhibitor. J. Mater. Chem. 12(12), 3766–3772 (2002). https://doi.org/10.1039/B205746H

    Article  CAS  Google Scholar 

  69. S. Saladi, J. Menghani, S. Prakash, A study on the cyclic oxidation behavior of detonation-Gun-sprayed Ni-5Al coatings on inconel-718 at 900 °C. J. Mater. Eng. Perform. 23(12), 4394–4403 (2014). https://doi.org/10.1007/s11665-014-1240-0

    Article  CAS  Google Scholar 

  70. S. Sampath, X. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni, A. Vaidya, Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: an integrated study for Ni–5 wt.%Al bond coats. Mater. Sci. Eng. A. 364(1–2), 216–231 (2004). https://doi.org/10.1016/j.msea.2003.08.023

    Article  CAS  Google Scholar 

  71. P. Sapkota, A. Aprahamian, K.Y. Chan, B. Frentz, K.T. Macon, S. Ptasinska, D. Robertson, K. Manukyan, Irradiation-induced reactions at the CeO2/SiO2/Si interface. J. Chem. Phys. 152(10), 543 (2020). https://doi.org/10.1063/1.5142619

    Article  CAS  Google Scholar 

  72. M. Schütze, Stress Effects in High Temperature Oxidation, in Shreir’s Corrosion. (Elsevier, UK, 2010), p.153–179

    Chapter  Google Scholar 

  73. P. Sheppard, H. Koiprasert, Effect of W dissolution in NiCrBSi–WC and NiBSi–WC arc sprayed coatings on wear behaviors. Wear. 317(1–2), 194–200 (2014). https://doi.org/10.1016/j.wear.2014.06.008

    Article  CAS  Google Scholar 

  74. S. Shrivastava, R. Upadhyaya, Study of fracture toughness and bend test morphologies of HVOF sprayed Cr3C2-25% NiCr coating after heat treatment. IOP Conf. Series: Mater. Sci. Eng. (2018). https://doi.org/10.1088/1757-899X/346/1/012026

    Article  Google Scholar 

  75. H.S. Sidhu, B.S. Sidhu, S. Prakash, Cyclic hot corrosion of high-velocity oxy fuel sprayed coatings on steel at 900 °C. Corrosion. 62(11), 1028–1038 (2006). https://doi.org/10.5006/1.3278230

    Article  CAS  Google Scholar 

  76. T.S. Sidhu, A. Malik, S. Prakash, R.D. Agrawal, Oxidation and hot corrosion resistance of HVOF WC-NiCrFeSiB Coating on Ni- and Fe-based Superalloys at 800 °C. J. Therm. Spray Technol. 16(5–6), 844–849 (2007). https://doi.org/10.1007/s11666-007-9106-8

    Article  CAS  Google Scholar 

  77. T.S. Sidhu, S. Prakash, R.D. Agrawal, Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment. J. Therm. Spray Technol. 15(3), 387–399 (2006). https://doi.org/10.1361/105996306X124392

    Article  CAS  Google Scholar 

  78. T.S. Sidhu, S. Prakash, R.D. Agrawal, Performance of high-velocity oxyfuel-sprayed coatings on an Fe-based superalloy in Na2so4-60%V2O5 environment at 900 °C part II: hot corrosion behavior of the coatings. J. Mater. Eng. Perform. 15(1), 130–138 (2006). https://doi.org/10.1361/105994906X83411

    Article  CAS  Google Scholar 

  79. P.D. Silva-Leon, O. Sotelo-Mazon, G. Salinas-Solano, J. Porcayo-Calderon, J.G. Gonzalez-Rodriguez, S. Valdez, L. Martinez-Gomez, Hot corrosion behavior of Ni20Cr alloy in NaVO3 molten salt. J. Mater. Eng. Perform. 28(8), 5047–5062 (2019). https://doi.org/10.1007/s11665-019-04235-4

    Article  CAS  Google Scholar 

  80. G. Singh, N. Bala, V. Chawla, Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni-22Cr-10Al-1Y and Ni-22Cr-10Al-1Y-SiC (N) coatings on ASTM-SA213-T22 steel. Int. J. Miner. Metall. Mater. 27(3), 401–416 (2020). https://doi.org/10.1007/s12613-019-1946-y

    Article  CAS  Google Scholar 

  81. G. Singh, N. Bala, V. Chawla, Y.K. Singla, Hot corrosion behavior of HVOF-sprayed carbide based composite coatings for boiler steel in Na2SO4–60 % V2O5 environment at 900 °C under cyclic conditions. Corros. Sci. 190(July), 109666 (2021). https://doi.org/10.1016/j.corsci.2021.109666

    Article  CAS  Google Scholar 

  82. S. Singh, K. Goyal, R. Bhatia, Mechanical and microstructural properties of yttria-stabilized zirconia reinforced Cr3C2-25NiCr thermal spray coatings on steel alloy. J. Electrochem. Sci. Eng. 12(5), 819–828 (2022). https://doi.org/10.5599/jese.1278

    Article  CAS  Google Scholar 

  83. S. Singh, K. Goyal, R. Goyal, Performance of Cr3C2-25(Ni-20Cr) and Ni-20Cr coatings on T91 boiler tube steel in simulated boiler environment at 900 °C. Chem. Mater. Eng. 4(4), 57–64 (2016). https://doi.org/10.13189/cme.2016.040401

    Article  CAS  Google Scholar 

  84. R. Sivakumar, B.L. Mordike, High temperature coatings for gas turbine blades: a review. Surface Coatings Technol. 37(2), 139–160 (1989). https://doi.org/10.1016/0257-8972(89)90099-6

    Article  CAS  Google Scholar 

  85. B. Somasundaram, R. Kadoli, M.R. Ramesh, Hot corrosion behaviour of HVOF sprayed (Cr3C2–35 % NiCr) + 5 % Si coatings in the presence of Na2SO4–60 % V2O5 at 700 °C. Trans. Indian Inst. Met. 68(2), 257–268 (2015). https://doi.org/10.1007/s12666-014-0453-0

    Article  CAS  Google Scholar 

  86. V. Sreenivasulu, M. Manikandan, High-temperature corrosion behaviour of air plasma sprayed Cr3C2-25NiCr and NiCrMoNb powder coating on alloy 80A at 900 °C. Surf. Coat. Technol. 337, 250–259 (2018). https://doi.org/10.1016/j.surfcoat.2018.01.011

    Article  CAS  Google Scholar 

  87. V. Sreenivasulu, M. Manikandan, Hot corrosion studies of HVOF sprayed carbide and metallic powder coatings on alloy 80A at 900 °C. Mater. Res. Express. 6(3), 036519 (2018). https://doi.org/10.1088/2053-1591/aaf65d

    Article  CAS  Google Scholar 

  88. M. Sridharan, T. Maiyalagan, G. Panomsuwan, R. Techapiesancharoenkij, Enhanced electrocatalytic activity of cobalt-doped ceria embedded on nitrogen, sulfur-doped reduced graphene oxide as an electrocatalyst for oxygen reduction reaction. Catalysts. 12(1), 6 (2022). https://doi.org/10.3390/catal12010006

    Article  CAS  Google Scholar 

  89. V. Stetsovych, F. Pagliuca, F. Dvořák, T. Duchoň, M. Vorokhta, M. Aulická, J. Lachnitt, S. Schernich, I. Matolínová, K. Veltruská, T. Skála, D. Mazur, J. Mysliveček, J. Libuda, V. Matolín, Epitaxial cubic Ce2O3 films via Ce-CeO2 interfacial reaction. J. Phys. Chem. Lett. 4(6), 866–871 (2013). https://doi.org/10.1021/jz400187j

    Article  CAS  PubMed  Google Scholar 

  90. S. Sun, H. Fu, X. Ping, X. Guo, J. Lin, Y. Lei, W. Wu, J. Zhou, Effect of CeO2 addition on microstructure and mechanical properties of in-situ (Ti, Nb)C/Ni coating. Surf. Coat. Technol. 359, 300–313 (2019). https://doi.org/10.1016/j.surfcoat.2018.12.083

    Article  CAS  Google Scholar 

  91. X. Sun, S. Chen, Y. Wang, Z. Pan, L. Wang, Mechanical properties and thermal shock resistance of HVOF sprayed NiCrAlY coatings without and with nano ceria. J. Therm. Spray Technol. 21(5), 818–824 (2012). https://doi.org/10.1007/s11666-012-9760-3

    Article  CAS  Google Scholar 

  92. J.G. Thakare, C. Pandey, R.S. Mulik, M.M. Mahapatra, Microstructure and mechanical properties of D-Gun sprayed Cr3 C2 -NiCr coating on P91 steel subjected to long term thermal exposure at 650 °C. Mater. Res. Express. 6(11), 1165h1 (2019). https://doi.org/10.1088/2053-1591/ab5265

    Article  Google Scholar 

  93. A. Trelka, W. Żórawski, Ł Maj, P. Petrzak, D. Soboń, A. Góral, The effect of the substrate on the microstructure and tribological properties of cold sprayed (Cr3C2-25(Ni20Cr))-(Ni-graphite) cermet coatings. Materials. 15(3), 994 (2022). https://doi.org/10.3390/ma15030994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. T. Tzvetkoff, P. Gencheva, Mechanism of formation of corrosion layers on nickel and nickel-based alloys in melts containing oxyanions—a review. Mater. Chem. Phys. 82(3), 897–904 (2003). https://doi.org/10.1016/j.matchemphys.2003.08.001

    Article  CAS  Google Scholar 

  95. T. Tzvetkoff, A. Girginov, M. Bojinov, Corrosion of nickel, iron, cobalt and their alloys in molten salt electrolytes. J. Mater. Sci. 30(22), 5561–5575 (1995). https://doi.org/10.1007/BF00356688

    Article  CAS  Google Scholar 

  96. A. Verstak, B.Q. Wang, A. Beliaev, S. Lowrie, Composite coatings for elevated temperature erosion-corrosion protection in fossil-fueled boilers. Corrosion. 98, 98193 (1998)

    Google Scholar 

  97. J. Vicenzi, C.M. Marques, C.P. Bergmann, Hot and cold erosive wear of thermal sprayed NiCr-based coatings: influence of porosity and oxidation. Surf. Coat. Technol. 202(15), 3688–3697 (2008). https://doi.org/10.1016/j.surfcoat.2008.01.010

    Article  CAS  Google Scholar 

  98. G.C. Wood, I.G. Wright, J.M. Ferguson, The oxidation of Ni and Co and of Ni/Co alloys at high temperatures. Corros. Sci. 5(9), 645–661 (1965). https://doi.org/10.1016/S0010-938X(65)90203-9

    Article  CAS  Google Scholar 

  99. Y. Xiao, L. Li, M. Huang, Y. Liu, J. Xu, Z. Xu, Y. Lei, Treating waste with waste: metals recovery from electroplating sludge using spent cathode carbon combustion dust and copper refining slag. Sci. Total. Environ. 838, 156453 (2022). https://doi.org/10.1016/j.scitotenv.2022.156453

    Article  CAS  PubMed  Google Scholar 

  100. Z. Xu, Z. Wang, J. Chen, Y. Qiao, J. Zhang, Y. Huang, Effect of rare earth oxides on microstructure and corrosion behavior of laser-cladding coating on 316L stainless steel. Coatings. 9(10), 636 (2019). https://doi.org/10.3390/coatings9100636

    Article  CAS  Google Scholar 

  101. N. Yadav, Cerium oxide nanostructures: properties, biomedical applications and surface coatings. 3 Biotech. 12(5), 121 (2022). https://doi.org/10.1007/s13205-022-03186-3

    Article  PubMed  PubMed Central  Google Scholar 

  102. Y.Q. Yang, Y.C. Zhao, Z.X. Wen, G.X. Lu, H.Q. Pei, Z.F. Yue, Synergistic effect of multiple molten salts on hot corrosion behaviour of Ni-based single crystal superalloy. Corros. Sci. 204, 110381 (2022). https://doi.org/10.1016/j.corsci.2022.110381

    Article  CAS  Google Scholar 

  103. Z. Yang, W. Ren, L. Zhu, Y. Qing, Z. Huang, F. Luo, W. Zhou, Electromagnetic-wave absorption property of Cr2O3–TiO2 coating with frequency selective surface. J. Alloy. Compd. 803, 111–117 (2019). https://doi.org/10.1016/j.jallcom.2019.06.106

    Article  CAS  Google Scholar 

  104. P.F. You, X. Zhang, H.L. Zhang, H.J. Liu, C.L. Zeng, Effect of CeO2 on oxidation and electrical behaviors of ferritic stainless steel interconnects with Ni–Fe coatings. Int. J. Hydrogen Energy. 43(15), 7492–7500 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.178

    Article  CAS  Google Scholar 

  105. S. You, S. Xing, C. Jiang, Synergistic optimization of microstructures and properties of electrodeposited Ni–CeO2 composite coatings with CeO2 microparticles and CeO2 nanoparticles. J. Market. Res. 29, 181–195 (2024). https://doi.org/10.1016/j.jmrt.2024.01.061

    Article  CAS  Google Scholar 

  106. W.-J. Zhang, R. Sharghi-Moshtaghin, Revisit the type II corrosion mechanism. Metall. Mater. Trans. A. 49(9), 4362–4372 (2018). https://doi.org/10.1007/s11661-018-4755-4

    Article  CAS  Google Scholar 

  107. Y.J. Zhang, X.F. Sun, H.R. Guan, Z.Q. Hu, 1050 °C isothermal oxidation behavior of detonation gun sprayed NiCrAlY coating. Surf. Coat. Technol. 161(2–3), 302–305 (2002). https://doi.org/10.1016/S0257-8972(02)00468-1

    Article  CAS  Google Scholar 

  108. M. Zinkevich, D. Djurovic, F. Aldinger, Thermodynamic modelling of the cerium-oxygen system. Solid State Ionics. 177(11–12), 989–1001 (2006). https://doi.org/10.1016/j.ssi.2006.02.044

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harkulvinder Singh.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Chatha, S.S. & Sidhu, B.S. High Temperature Corrosion Performance of HVOF and D-gun Formulated Cr3C2-NiCr and Rare Earth Element Doped Cr3C2-NiCr Coating on TP347H Austenite Steel. J Fail. Anal. and Preven. (2024). https://doi.org/10.1007/s11668-024-01932-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11668-024-01932-8

Keywords

Navigation