Skip to main content
Log in

Atomistic Simulations of Dislocation Pileup: Grain Boundaries Interaction

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Using molecular dynamics (MD) simulations, we studied the dislocation pileup–grain boundary (GB) interactions. Two Σ11 asymmetrical tilt grain boundaries in Al are studied to explore the influence of orientation relationship and interface structure on dislocation activities at grain boundaries. To mimic the reality of a dislocation pileup in a coarse-grained polycrystalline, we optimized the dislocation population in MD simulations and developed a predict-correct method to create a dislocation pileup in MD simulations. MD simulations explored several kinetic processes of dislocations–GB reactions: grain boundary sliding, grain boundary migration, slip transmission, dislocation reflection, reconstruction of grain boundary, and the correlation of these kinetic processes with the available slip systems across the GB and atomic structures of the GB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.D. Callister, Fundamentals of Materials Science and Engineering, 7th ed. (John Wiley & Sons, Inc., New York, 2007), p. 252.

  2. J.P. Hirth and R.W. Balluffi, Acta Metall. 21, 929 (1973).

    Article  Google Scholar 

  3. J.P. Hirth, Acta Metall. 22, 1023 (1974).

    Article  Google Scholar 

  4. J. Wang and A. Misra, Curr. Opin. Solid State Mater. Sci. 18, 19 (2014).

    Article  Google Scholar 

  5. J. Wang and A. Misra, Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).

    Article  Google Scholar 

  6. N. Li, H. Wang, and A. Misra, J. Wang. Sci. Rep. 4, 6633 (2014).

    Article  Google Scholar 

  7. E.O. Hall, Proc. Phys. Soc. Lond. 64, 747 (1951).

    Article  Google Scholar 

  8. N.J. Petch, J. Iron Steel Inst. Lond. 174, 25 (1953).

    Google Scholar 

  9. M.J. Demkowicz, J. Wang, and R.G. Hoagland, Dislocations in Solids, Vol. 14, ed. J.P. Hirth (Amsterdam: Elsevier, 2008), pp. 141–205.Chap. 83.

    Google Scholar 

  10. J. Wang, O. Anderoglu, J.P. Hirth, A. Misra, and X. Zhang, Appl. Phys. Lett. 95, 021908 (2009).

    Article  Google Scholar 

  11. J. Wang and I.J. Beyerlein, Model. Simul. Mater. Sci. Eng. 20, 024002 (2012).

    Article  Google Scholar 

  12. J.P. Hirth, R.C. Pond, R.G. Hoagland, X.Y. Liu, and J. Wang, Prog. Mater Sci. 58, 749 (2013).

    Article  Google Scholar 

  13. J. Wang, J.P. Hirth, R.C. Pond, and J.M. Howe, Acta Mater. 59, 241 (2011).

    Article  Google Scholar 

  14. K. Kang, J. Wang, S.J. Zheng, and I.J. Beyerlein, J. Appl. Phys. 112, 073501 (2012).

    Article  Google Scholar 

  15. X.-Y. Liu, F. Ercolessi, and J.B. Adams, Model. Simul. Mater. Sci. Eng. 12, 665 (2004).

    Article  Google Scholar 

  16. J.D. Eshelby, F.C. Frank, and F.R.N. Nabarro, Philos. Mag. 42, 351 (1951).

    Article  MathSciNet  Google Scholar 

  17. J.D. Eshelby, Phil. Mag. 40, 903 (1949).

    Article  Google Scholar 

  18. G. Leibfried, Z. Phys. 130, 214 (1951).

    Article  MathSciNet  Google Scholar 

  19. J.P. Hirth and J. Lothe, Theory of Dislocations (New York: Krieger Pub Co, 1992).

    Google Scholar 

  20. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra, Acta Mater. 56, 5685 (2008).

    Article  Google Scholar 

  21. D.M. Barnett and J. Lothe, J Phys F: Metal Phys. 4, 1618 (1974).

    Article  Google Scholar 

  22. J. Wang and I.J. Beyerlein, Metall. Mater. Trans. A 43A, 3556 (2012).

    Article  Google Scholar 

  23. D. Bufford, Y. Liu, J. Wang, H. Wang, and X. Zhang, Nat. Commun. 5, 4864 (2014).

    Article  Google Scholar 

  24. S. Shao, J. Wang, and A. Misra, J. Appl. Phys. 116, 023508 (2014).

    Article  Google Scholar 

  25. S. Shao, J. Wang, A. Misra, and R.G. Hoagland, Sci. Reps. 3, 2448 (2013).

    Google Scholar 

  26. I. Salehinia, S. Shao, J. Wang, and H.M. Zbib, Acta Mater. 86, 331 (2015).

    Article  Google Scholar 

  27. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra, Acta Mater. 56, 3109 (2008).

    Article  Google Scholar 

  28. J.W. Cahn and J.E. Taylor, Acta Mater. 52, 4887 (2004).

    Article  Google Scholar 

  29. J. Wang, A. Misra, and J.P. Hirth, Phys. Rev. B 83, 064106 (2011).

    Article  Google Scholar 

  30. A. Suzuki and Y. Mishin, Mater. Sci. Forum 502, 157 (2005).

    Article  Google Scholar 

  31. J.W. Cahn, Y. Mishin, and A. Suzuki, Acta Mater. 54, 4953 (2006).

    Article  Google Scholar 

  32. S.G. Srinivasan and J.W. Cahn, Science and Technology of Interfaces, ed. S. Ankem, C.S. Pande, I. Ovidko, and R. Ranganathan (Seattle: TMS, 2002), p. 3.

    Google Scholar 

  33. D. Molodov, A. Ivanov, and G. Gottstein, Acta Mater. 55, 1843 (2007).

    Article  Google Scholar 

  34. W. Winning, G. Gottstein, and L.S. Shvindlerman, Acta Mater. 49, 211 (2001).

    Article  Google Scholar 

  35. W. Winning, G. Gottstein, and L.S. Shvindlerman, Acta Mater. 50, 353 (2002).

    Article  Google Scholar 

  36. M. Winning and A.D. Rollett, Acta Mater. 53, 2901 (2005).

    Article  Google Scholar 

  37. H. Yoshida, K. Yokoyama, N. Shibata, and Y.I.A.T. Sakuma, Acta Mater. 52, 2349 (2004).

    Article  Google Scholar 

  38. J.P. Hirth and R.C. Pond, Acta Mater. 44, 4749 (1996).

    Article  Google Scholar 

  39. J.P. Hirth, J. Phys. Chem. Solids 55, 985 (1994).

    Article  Google Scholar 

  40. K. Kang, J. Wang, and I.J. Beyerlein, J. Appl. Phys. 111, 053531 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was originally supported by the Los Alamos National Laboratory Directed Research and Development project (LDRD-DR) during 2009–2011 and later finished with the support provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences and the Los Alamos National Laboratory Directed Research and Development project LDRD-ER20140450. The author acknowledges collaborations with T.C. Germann, S.M. Valone, R.G. Hoagland, and A.F. Voter, at Los Alamos National Laboratory, Prof. A. Misra at University of Michigan, and Prof. J.P. Hirth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J. Atomistic Simulations of Dislocation Pileup: Grain Boundaries Interaction. JOM 67, 1515–1525 (2015). https://doi.org/10.1007/s11837-015-1454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1454-0

Keywords

Navigation