Skip to main content
Log in

Discrete dislocation dynamics simulations of twin size-effects in magnesium

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A dislocation-\(\left\{ {10\bar 12} \right\}\) twin boundary (TB) interaction model was proposed and introduced into discrete dislocation dynamics simulations to study the mechanical behavior of micro-twinned Mg. Strong strain hardening was captured by current simulations, which is associated with the strong TB’s barrier effect. In addition, twin size effects with small TB spacing leading to a strong yield stress, were observed to be orientation dependent. Basal slip orientation produces a strong size effect, while prismatic slip does a weak one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Christian and S. Mahajan, Prog. Mater. Sci. 39, 1 (1995).

    Article  Google Scholar 

  2. L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev and S. Godet, Mater. Sci. Eng. A 445–446, 302 (2007).

    Article  Google Scholar 

  3. M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty and S.R. Kalidindi, Acta Mater. 58, 6230 (2010).

    Article  CAS  Google Scholar 

  4. M.R. Barnett, Z. Keshavarz, A.G. Beer and D. Atwell, Acta Mater. 52, 5093 (2004).

    Article  CAS  Google Scholar 

  5. H. Fan, S. Aubry, A. Arsenlis and J.A. El-Awady, The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations (submitted).

  6. E. Van der Giessen and A. Needleman, Model. Simul. Mater. Sci. Eng. 3, 689 (1995).

    Article  Google Scholar 

  7. H. Fan, Z. Li, M. Huang and X. Zhang, Int. J. Solids. Struct. 48, 1754 (2011).

    Article  CAS  Google Scholar 

  8. A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce and V.V. Bulatov, Model. Simul. Mater. Sci. Eng. 15, 553 (2007).

    Article  Google Scholar 

  9. L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis and Y. Brechet, Solid State Phenom. 23–24, 455 (1992).

    Article  Google Scholar 

  10. J.A. El-Awady, S. Bulent Biner and N.M. Ghoniem, J. Mech. Phys. Solids 56, 2019 (2008).

    Article  CAS  Google Scholar 

  11. H. Fan, Z. Li and M. Huang, Scripta Mater. 67, 225 (2012).

    Article  CAS  Google Scholar 

  12. C. Ouyang, Z. Li, M. Huang and H. Fan, Int. J. Solids. Struct. 47, 3103 (2010).

    Article  Google Scholar 

  13. Z. Li, C. Hou, M. Huang and C. Ouyang, Comp. Mater. Sci. 46, 1124 (2009).

    Article  CAS  Google Scholar 

  14. M. Huang, Z. Li and J. Tong, Int. J. Plast. 61, 112 (2014).

    Article  CAS  Google Scholar 

  15. H. Fan, Z. Li and M. Huang, Scripta Mater. 66, 813 (2012).

    Article  CAS  Google Scholar 

  16. C.C. Wu, P.W. Chung, S. Aubry, L.B. Munday and A. Arsenlis, Acta Mater. 61, 3422 (2013).

    Article  CAS  Google Scholar 

  17. G. Monnet, B. Devincre and L.P. Kubin, Acta Mater. 52, 4317 (2004).

    Article  CAS  Google Scholar 

  18. H. Fan, S. Aubry, A. Arsenlis and J.A. El-Awady, Scripta Mater. 97, 25 (2015).

    Article  CAS  Google Scholar 

  19. Z.H. Aitken, H. Fan, J.A. El-Awady and J.R. Greer, J. Mech. Phys. Solids 76, 208 (2015).

    Article  CAS  Google Scholar 

  20. L. Capolungo, I.J. Beyerlein and Z.Q. Wang, Model. Simul. Mater. Sci. Eng. 18, 085002 (2010).

    Article  Google Scholar 

  21. S. Olarnrithinun, S.S. Chakravarthy and W.A. Curtin, J. Mech. Phys. Solids 61, 1391 (2013).

    Article  CAS  Google Scholar 

  22. S. Groh, E.B. Marin, M.F. Horstemeyer and D.J. Bammann, Model. Simul. Mater. Sci. Eng. 17, 075009 (2009).

    Article  Google Scholar 

  23. Y. Tang and J.A. El-Awady, Acta Mater. 71, 319 (2014).

    Article  CAS  Google Scholar 

  24. S.R. Agnew and Ö. Duygulu, Int. J. Plast. 21, 1161 (2005).

    Article  CAS  Google Scholar 

  25. J. Zhang and S.P. Joshi, J. Mech. Phys. Solids 60, 945 (2012).

    Article  CAS  Google Scholar 

  26. Y. Tang and J.A. El-Awady, Mater. Sci. Eng. A 618, 424 (2014).

    Article  CAS  Google Scholar 

  27. H.-y. Song and Y.-l. Li, Phys. Lett. A 376, 529 (2012).

    Article  CAS  Google Scholar 

  28. J. Wang, I.J. Beyerlein and C.N. Tomé, Int. J. Plast. 56, 156 (2014).

    Article  CAS  Google Scholar 

  29. A. Serra and D.J. Bacon, Phil. Mag. A 73, 333 (1996).

    Article  CAS  Google Scholar 

  30. M. Yuasa, K. Masunaga, M. Mabuchi and Y. Chino, Phil. Mag. 94, 285 (2013).

    Article  Google Scholar 

  31. H. Fan, J.A. El-Awady and Q. Wang, J. Nucl. Mater. 458, 176 (2015).

    Article  CAS  Google Scholar 

  32. M.H. Yoo and C.-T. Wei, Phil. Mag. 14, 573 (1966).

    Article  CAS  Google Scholar 

  33. D.I. Tomsett and M. Bevis, Phil. Mag. 19, 533 (1969).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the Army Research Laboratory (#W911NF-12-2-0022). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of ARL or U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. HF also gratefully acknowledges the financial support of Natural Science Foundation of China (11302140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haidong Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Aubry, S., Arsenlis, A. et al. Discrete dislocation dynamics simulations of twin size-effects in magnesium. MRS Online Proceedings Library 1741, 27–32 (2015). https://doi.org/10.1557/opl.2015.86

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.86

Navigation