Skip to main content
Log in

The Impact of Cathode Material and Shape on Current Density in an Aluminum Electrolysis Cell

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A finite element model was developed to determine the impact of cathode material and shape on current density in an aluminum electrolysis cell. For the cathode material, results show that increased electrical resistivity leads to a higher cathode voltage drop; however, the horizontal current is reduced in the metal. The horizontal current magnitude for six different cathode materials in decreasing order is graphitized, semi-graphitized, full graphitic, 50% anthracite (50% artificial graphite), 70% anthracite (30% artificial graphite), 100% anthracite. The modified cathode shapes with an inclined cathode surface, higher collector bar and cylindrical protrusions are intended to improve horizontal current and flow resistance. Compared to a traditional cathode, modified collector bar sizes of 70 mm × 230 mm and 80 mm × 270 mm can reduce horizontal current density component Jx by 10% and 19%, respectively, due to better conductivity of the steel. The horizontal current in the metal decreases with increase of cathode inclination. The peak value of Jx can be approximately reduced by 20% for a 2° change in inclination. Cylindrical protrusions lead to local horizontal current increase on their tops, but the average current is less affected and the molten metal is effectively slowed down.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Kandev and H. Fortin, Light Metals, ed. G. Bearne (Warrendale: TMS, 2009), pp. 1061–1066.

    Google Scholar 

  2. O. Zikanov, A. Thess, P.A. Davidson, and D.P. Ziegler, Metall. Trans. B 31, 1541 (2000).

    Article  Google Scholar 

  3. S. Das, Y. Morsi, and G. Brooks, JOM 66, 235 (2014).

    Article  Google Scholar 

  4. S. Das, G. Brooks, and Y. Morsi, Metall. Trans. B 42, 243 (2011).

    Article  Google Scholar 

  5. M. Li, J. Cent. South Univ. (Sci. Technol.) 40, 562 (2009).

    Google Scholar 

  6. H. Sun, O. Zikanov, and D.P. Ziegler, Fluid Dyn. Res. 35, 255 (2004).

    Article  MATH  Google Scholar 

  7. V. Bojarevics and K. Pericleous, Light Metals, ed. G. Bearne (Warrendale: TMS, 2009), pp. 569–574.

    Google Scholar 

  8. B. Li, Light Metals, ed. S.J. Lindsay (Warrendale: TMS, 2011), pp. 1029–1033.

    Google Scholar 

  9. B. Li, Light Metals, ed. C.E. Suarez (Warrendale: TMS, 2012), pp. 865–868.

    Google Scholar 

  10. S. Das and G. Littlefair, Light Metals, ed. S.J. Lindsay (Warrendale: TMS, 2011), pp. 847–851.

    Google Scholar 

  11. R. Kaenel and J. Antille, Light Metals, ed. S.J. Lindsay (Warrendale: TMS, 2011), pp. 569–574.

    Google Scholar 

  12. M. Dupuis and R.D. Peterson, Light Metals, ed. R.D. Perterson (Warrendale: TMS, 2000), pp. 169–178.

    Google Scholar 

  13. J. Dreyfus, L. Rivoaland, and S. Lacroix, Light Metals, ed. A.T. Tabereaux (Warrendale: TMS, 2004), pp. 603–608.

    Google Scholar 

  14. M. Blais, M. Desilets, and M. Lacroix, Appl. Therm. Eng. 58, 439 (2013).

    Article  Google Scholar 

  15. S. Das, G. Brooks, and Y. Morsi, Metall. Trans. B 42, 243 (2011).

    Article  Google Scholar 

  16. J. Zoric, J. Thonstad, and T. Haarberg, Metall. Trans. B 30, 341 (1999).

    Article  Google Scholar 

  17. H. Fortin, N. Kandev, and M. Fafard, Finite Elem. Anal. Des. 52, 71 (2012).

    Article  Google Scholar 

  18. N.X. Feng, J.P. Peng, Y.W. Wang, Y.Z. Di, and X.A. Liao, Light Metals, ed. B. Sadler (Warrendale: TMS, 2012), pp. 549–552.

    Google Scholar 

  19. N. Feng, China Patent, CN 102400176A, 2012/04/04.

  20. N. Feng, Aluminum Electrolysis, 188 (2006).

  21. P. Reny and S. Wilkening, Light Metals, ed. D.P. Peterson (Warrendale: TMS, 2000), pp. 1005–1010.

    Google Scholar 

  22. H.A. Øye and B.J. Welch, JOM 50, 18 (1998).

    Article  Google Scholar 

  23. D. Lombard, T. Beheregaray, B. Feve, and J.M. Jolas, Light Metals, ed. B.J. Welch (Warrendale: TMS, 1998), pp. 653–658.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support by the National Nature Science Foundation of China (Grant Nos. 51204044 and 51434005) and the National Key Technology R&D Program of China (No. 2015BAB04B03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Peng, J., Di, Y. et al. The Impact of Cathode Material and Shape on Current Density in an Aluminum Electrolysis Cell. JOM 68, 593–599 (2016). https://doi.org/10.1007/s11837-015-1719-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1719-7

Keywords

Navigation