Skip to main content
Log in

Interface-enabled defect reduction in He ion irradiated metallic multilayers

  • Research Summary
  • Solid State Interfaces
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Metallic multilayers are good model systems to explore the effects of heterophase interfaces in reducing radiation damage in structural materials. We summarize recent studies on radiation damage in immiscible face-centered cubic/body-centered cubic metallic multilayers, in particular Cu/V and Cu/Nb. These multilayers have shown unique characteristics compared to bulk metals under irradiation, including several orders of magnitude higher He solid solubility, dramatic reduction of bubble density, interface confined growth of He bubbles, and much lower radiation hardening. The mechanisms for interface enhanced radiation tolerance are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.E. Stoller and G.R. Odette, ASTM Special Technical Publications, 782 (1982), p. 275.

    CAS  Google Scholar 

  2. A.A. Lucas, Physica B & C, 127 (1984), p. 225.

    Article  CAS  Google Scholar 

  3. H. Trinkaus and B.N. Singh, J. Nucl. Matls., 323 (2003), p. 229.

    Article  CAS  Google Scholar 

  4. J. Laakmann, P. Jung, and W. Uelhoff, Acta Metallurgica, 35 (1987), p. 2063.

    Article  CAS  Google Scholar 

  5. H. Landolt, P. Ehrhart, and H. Ullmaier, Atomic Defects in Metals (Berlin: Springer-Verlag, 1991).

    Google Scholar 

  6. G.W. Greenwood, A.J.E. Foreman, and D.E. Rimmer, J. Nucl. Matls., 1 (1959), p. 305.

    Article  Google Scholar 

  7. R.J. Kurtz, F. Gao, H.L. Heinisch, B.D. Wirth, G.R. Odette, and T. Yamamoto, “Atomistic Modeling of He Binding and Migration at Interfaces in Fe” (paper presented at the TMS 2005 Annual Meeting, San Francisco, California, February 13–17, 2005).

  8. W.G. Wolfer, J. Nucl. Matls., 93/94 (1980), p. 713.

    Article  Google Scholar 

  9. D.L. Porter, G.D. Hudman, and F.A. Garner, J. Nuclear Materials, 179–181 (March–April 1991), pt. A, pp. 581–584.

  10. D.L. Porter and F.A. Garner, J. Nucl. Matls., 159 (1988), pp. 114–121.

    Article  CAS  Google Scholar 

  11. B.N. Singh, Phil. Mag., 28(6) (1973), pp. 1409–1413.

    Article  CAS  Google Scholar 

  12. N. Li, M.S. Martin, O. Anderoglu, A. Misra, L. Shao, H. Wang, and X. Zhang, J. Appl. Phys., 105 (2009), p. 12.

    Google Scholar 

  13. N. Li, E.G. Fu, H. Wang, J.J. Carter, L. Shao, S.A. Maloy, A. Misra, and X. Zhang, J. Nucl. Matls., 389 (2009), p. 233.

    Article  CAS  Google Scholar 

  14. E.G. Fu, J. Carter, G. Swadener, A. Misra, L. Shao, H. Wang, and X. Zhang, J. Nucl. Matls., 385 (2009), p. 629.

    Article  CAS  Google Scholar 

  15. T. Hochbauer, A. Misra, K. Hattar, and R.G. Hoagland, J. Applied Physics, 98 (2005), 123516.

    Article  Google Scholar 

  16. X. Zhang, N. Li, O. Anderoglu, H. Wang, J.G. Swadener, T. Hochbauer, A. Misra, and R.G. Hoagland, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 261(1–2) (2007), p. 1129.

    Article  CAS  Google Scholar 

  17. A. Misra, M.J. Demkowicz, X. Zhang, and R.G. Hoagland, JOM, 59(9) (2007), p. 62.

    Article  CAS  Google Scholar 

  18. M. Ruhle and M. Wilkens, Crystal Lattice Defects, 6 (1975), pp. 129–140.

    Google Scholar 

  19. Z.M.D. Ziegler and J.F. Biersack, “Calculation using the Stopping and Range of Ions in Matter (SRIM) Code, http://www.srim.org/.

  20. M.J. Demkowicz, R.G. Hoagland, and J.P. Hirth, Physical Review Letters, 100 (2008). 136102.

    Article  CAS  Google Scholar 

  21. B. Xian-Ming, A.F. Voter, R.G. Hoagland, M. Nastasi, and B.P. Uberuaga, Science, 327 (2010), p. 1631.

    Article  Google Scholar 

  22. E.G. Fu, A. Misra, H. Wang, and X. Zhang, “Interface Enabled Defects Reduction in Helium Ion Irradiated Cu/V Nanolayers,” J. Nucl. Matls. (in press), doi:10.1016/j.jnucmat.2010.10.011.

  23. M.J. Demkowicz, D. Bhattacharyya, I. Usov, W.Q. Wang, M. Nastasi, and A. Misra, APL, 97 (2010), 161903.

    Google Scholar 

  24. T.E. Mitchell, Y.C. Lu, A.J. Griffin, M. Nastasi, and H. Kung, J. American Ceramic Society, 80 (1997), p. 1673.

    Article  CAS  Google Scholar 

  25. M.J. Demkowicz and R.G. Hoagland, Int. J. Applied Mechanics, 1 (2009, p. 421.

    Article  Google Scholar 

  26. M.J. Demkowicz, J. Wang, and R.G. Hoagland, in Dislocations in Solids, Vol. 14, ed. J.P. Hirth (Amsterdam: Elsevier, 2008), p. 141.

    Google Scholar 

  27. R. Lasser, K. Bickmann, H. Trinkhaus, and H. Wenzl, Phys. Rev. B, 34 (1986), p. 4364.

    Article  Google Scholar 

  28. H. Pfeiffer and H. Peisl, Phys. Lett., 60 (1977), p. 363.

    Article  Google Scholar 

  29. W.G. Wolfer, Phil. Mag. A, 59 (1989), p. 87.

    Article  Google Scholar 

  30. J. Friedel, Dislocations (New York: Pergamon, 1964).

    Google Scholar 

  31. F. Kroupa and P.B. Hirsch, Disc. Faraday Soc., 38 (1964), p. 49.

    Article  Google Scholar 

  32. S.J. Zinkle and Y. Matsukawa, J. Nucl. Matls., 329 (2004), p. 88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Fu, E.G., Misra, A. et al. Interface-enabled defect reduction in He ion irradiated metallic multilayers. JOM 62, 75–78 (2010). https://doi.org/10.1007/s11837-010-0185-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0185-5

Keywords

Navigation