Skip to main content
Log in

The influence of microstructure on the failure behaviour of PEEK

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, different molecular weight PEEK materials were used to determine the effect of spherulite size on fracture. Melt processing of the PEEK at different temperatures produced samples of different average spherulite size. A permanganic etching technique was used to reveal the spherulites. It was found that for low molecular weight 150P PEEK, the spherulite size increased with melt processing temperature; but, for the higher molecular weight 450G PEEK, the spherulite size remained approximately constant. Also, the average spherulite size was markedly lower for the material of higher molecular weight. The failure behaviour of these samples was studied using a compact tension test. It was found that the fracture toughness of PEEK varied with processing temperature. Also, the average spherulite size of a PEEK material had a profound influence on the fracture mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Blundell and B. N. Osborn, Polymer 24 (1983) 953.

    Google Scholar 

  2. O. B. Searle and R. H. Pfeiffer, Polym. Eng. Sci. 25 (1985) 474.

    Google Scholar 

  3. D. W. Clegg and A. A. Collyer, “The Mechanical Properties of Reinforced Thermoplastics” (Elsevier Applied Science Publishers, New York, 1984).

    Google Scholar 

  4. G. R. Belbin, Proceedings of the 12th John Player Lecture, London, 1984.

  5. D. J. Kemmish and J. N. Hay, Polymer 26 (1985) 905.

    Google Scholar 

  6. E. J. Stober, J. C. Seferis and J. D. Keenan, ibid. 25 (1984) 1845.

    Google Scholar 

  7. J. Delmonte, “Technology of Carbon and Graphite Fiber Composites”, (Von Nostrand Reinhold, New York, 1981).

    Google Scholar 

  8. J. C. Seferis, A. E. Elia and A. R. Wedgewood, Proceedings of European Meeting on Polymer Processing and Properties, (Plenum Press, New York, 1984) p. 423.

    Google Scholar 

  9. J. C. Seferis, Polym. Compos. 7 (1986) 158.

    Google Scholar 

  10. C. N. Velisaris and J. C. Seferis, Polym. Eng. Sci. 26 (1986) 1574.

    Google Scholar 

  11. W. J. Sichina and P. S. Gill, ANTEC (1985) 293.

  12. C. H. Michler and I. Naumann, Proceedings 17th Europhysics Conference on Macromolecular Physics (Walter de Gruyter, New York, 1986) p. 329.

    Google Scholar 

  13. J. H. Reinshagen and R. W. Dunlap, J. Appl. Polym. Sci. 17 (1973) 3619.

    Google Scholar 

  14. J. R. Collier and L. M. Neal, Polym. Eng. Sci. 9 (1969) 182.

    Google Scholar 

  15. E. B. Morgan, J. Appl. Chem. 4 (1963) 175.

    Google Scholar 

  16. J. V. McLaren, Polymer 4 (1963) 175.

    Google Scholar 

  17. B. Wunderlich, “Macromolecular Physics” (Academic, New York, 1976).

    Google Scholar 

  18. L. W. Kleiner, M. R. Radloff, J. M. Schultz and T. W. Chou, J. Polym. Sci., Polym. Phys. Edn. 12 (1974) 819.

    Google Scholar 

  19. J. L. Way, J. R. Atkinson and J. Nutting, J. Mater. Sci. 9 (1974) 293.

    Google Scholar 

  20. K. Friedrich, Fracture 3 (1977) 1119.

    Google Scholar 

  21. J. M. Schultz, Polym. Eng. Sci. 24 (1984) 770.

    Google Scholar 

  22. R. A. Crick, D. C. Leach, P. J. Meakin and D. R. Moore, J. Mater. Sci. 22 (1987) 2094.

    Google Scholar 

  23. J. Deraux, D. Delimoy, D. Daoust, R. Legras, J. P. Mercier, C. Strazielle and E. Nield, Polymer 26 (1985) 1994.

    Google Scholar 

  24. Jia-Ni Chu, M. S. Thesis, University of Delaware (1988).

  25. R. H. Olley, D. C. Bassett and D. J. Blundell, Polymer 27 (1986) 344.

    Google Scholar 

  26. D. Broek, “Elementary Engineering Fracture Mechanics”; 4th Rev. Edn (Martinus Nijhoff, Dordrecht, Netherlands, 1986).

    Google Scholar 

  27. P. H. Geil, “Polymer Single Crystals” (Interscience, New York, 1963).

    Google Scholar 

  28. W. Y. Yeh and S. L. Lambert, Macromol. Sci. Phys. B6 (1972) 599.

    Google Scholar 

  29. S. Kumar, D. P. Anderson and W. W. Adams, Polymer 27 (1986) 329.

    Google Scholar 

  30. A. J. Waddon, M. J. Hill, A. Keller and D. J. Blundell, J. Mater. Sci. 22 (1985) 1773.

    Google Scholar 

  31. Heike Motz, PhD Thesis, University of Delaware (1988).

  32. D. C. Bassett, “Principles of Polymer Morphology” (Cambridge University Press, Cambridge, 1981).

    Google Scholar 

  33. J. M. Schultz, “Polymer Materials Science” (Prentice-Hall, New Jersey, 1974).

    Google Scholar 

  34. J. M. S. Hearle, “Polymers and Their Properties, Vol. 1, Fundamentals of Structure and Mechanics” (Ellis Horwood Publishers, England, 1982).

    Google Scholar 

  35. F. Lednicky, Proceedings 17th Europhysics Conference on Macromolecular Physics, (Walter de Gruyter, New York, 1986) p. 54.

    Google Scholar 

  36. F. Lednicky and Z. Pelzbauer, J. Polym. Sci. Part C 38 (1972) 375.

    Google Scholar 

  37. K. Friedrich, Personal Communication, University of Delaware (1988).

  38. J. Karger-Kocsis and K. Friedrich, Polymer 27 (1986) 1753.

    Google Scholar 

  39. Idem., Plast. Rubber Proc. 8 (1987) 91.

    Google Scholar 

  40. K. Friedrich, R. Walter, H. Voss and J. Karger-Kocsis, Composites 17 (1986) 205.

    Google Scholar 

  41. W. S. Dubner, Personal Communication, University of Delaware (1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, JN., Schultz, J.M. The influence of microstructure on the failure behaviour of PEEK. J Mater Sci 24, 4538–4544 (1989). https://doi.org/10.1007/BF00544542

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00544542

Keywords

Navigation