Skip to main content
Log in

The development of the COST 531 lead-free solders thermodynamic database

  • Lead-Free Solder
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The methods for modeling the thermodynamic properties of multicomponent systems are described in this article. The rules for creating a consistent database for muticomponent systems are described in general terms and documented in relation to the thermodynamic database for lead-free solders, developed within the scope of European Cooperation in the Field of Scientific and Technical Research Action 531. New assessments and reassessments of the Bi-Sn-Zn, Cu-Ni-Sn, and Ag-Cu-Sn systems are shown as examples illustrating the application of the database for the modeling of lead-free solder materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. COST531 homepage: www.univie.ac.at/cost531/.

  2. R.H. Davies et al., CALPHAD, 26 (2002), p. 229.

    Article  CAS  Google Scholar 

  3. S.-L. Chen et al., CALPHAD, 26 (2002), p. 175.

    Article  CAS  Google Scholar 

  4. J.-O. Andersson et al., CALPHAD, 26 (2002), p. 273.

    Article  CAS  Google Scholar 

  5. C.W. Bale et al., CALPHAD, 26 (2002), p. 189.

    Article  CAS  Google Scholar 

  6. N. Saunders and A.P. Miodownik, CALPHAD (A Comprehensive Guide) (London: Elsevier, 1998).

    Google Scholar 

  7. R. Schmid-Fetzer et al., CALPHAD, 31 (2007), p. 38.

    Article  CAS  Google Scholar 

  8. A.T. Dinsdale, CALPHAD, 15 (1991), p. 317.

    Article  CAS  Google Scholar 

  9. SGTE Unary database, Version 4.4 (Teddington, U. K.: Scientific Group Thermodata Europe, 2001).

  10. V.D. Malakhov et al., J. Phase Equilib., 21 (2000), p. 514.

    Article  CAS  Google Scholar 

  11. M.H. Braga et al., CALPHAD (in print 2007).

  12. J. Vízdal et al., CALPHAD (in print, 2007).

  13. N. Asryan and A. Mikula, Z. Metallkd., 95 (2004), p. 132.

    CAS  Google Scholar 

  14. X.J. Liu et al., J. Electron. Mater., 9 (2001), p. 1093.

    Article  Google Scholar 

  15. H.S. Liu, J. Wang, and Z.P. Jin, CALPHAD, 28 (2004), p. 363.

    Article  CAS  Google Scholar 

  16. J. Miettinen, CALPHAD, 27 (2003), p. 309.

    Article  CAS  Google Scholar 

  17. K.W. Moon et al., J. Electron. Mater., 29 (2002), p. 1122.

    Article  Google Scholar 

  18. M.E. Loomans and M.E. Fine, Met. Mat. Trans. A, 31A (2000), p. 1155.

    Article  CAS  Google Scholar 

  19. Y.-W. Yen, and S.-W. Chen, J. Mater. Res., 19 (2004), p. 2298.

    Article  CAS  Google Scholar 

  20. R.E. Gebhardt and G. Petzow, Z. Metallade, 50 (1959), p. 597.

    CAS  Google Scholar 

  21. V.N. Fedorov, O.E. Osinchev, and E.T. Yushkina, Phase Diagrams of Metallic Systems, vol. 26, ed. N.V. Ageev and L.A. Petrova (1982), p. 149.

  22. C.M. Miller, I.E. Anderson, and J.F. Smith, J. Electron. Mater., 23 (1994), p. 595.

    Article  CAS  Google Scholar 

  23. S. Chada et al., J. Electron. Mater., 26 (1999), p. 1194.

    Article  Google Scholar 

  24. S.W. Chen and Ch.A. Chang, J. Electron. Mater., 33 (2004), p. 1071.

    Article  CAS  Google Scholar 

  25. S.S. Shen, P.J. Spencer, and M.J. Pool, Trans. AIME, 245 (1969), p. 603.

    CAS  Google Scholar 

  26. C. Luef, H. Flandorfer, and H. Ipser, Z. Metallkd., 95 (2004), p. 151.

    CAS  Google Scholar 

  27. B.J. Lee, N.M. Hwang, and H.M. Lee, Acta Mater., 45 (1997), p. 1867.

    Article  CAS  Google Scholar 

  28. H.M. Lee, S.W. Yoon, and B.J. Lee, J. Electron. Mater., 27 (1998), p. 1161.

    Article  CAS  Google Scholar 

  29. I. Ohnuma et al., J. Electron. Mater., 29 (2000), p. 1137.

    Article  CAS  Google Scholar 

  30. J.A. Gisby and A.T. Dinsdale, unpublished work (2002).

  31. A.T. Dinsdale and A. Watson, unpublished work (2007).

  32. L. Zabdyr, unpublished work (2005).

  33. C. Hunt et al., “Predicting Microstructure of Mixed Solder Alloy Systems,” NPL Report, MATC(A), 83 (2002).

  34. Z. Huang et al., J. Electron. Mater., 33 (2004), p. 1227.

    Article  CAS  Google Scholar 

  35. T. Tanaka, K. Hack, and S. Hara, MRS Bulletin, 24(4) (1999), p. 45.

    CAS  Google Scholar 

  36. J.A.V. Butler, Proc. Roy. Soc. London, 85 (1932), p. 347.

    Google Scholar 

  37. I. Ohnuma et al., J. Phase Equil. Diffusion, 27(3) (2006), p. 245.

    Article  CAS  Google Scholar 

  38. R. Picha, J. Vrestal, and A. Kroupa, CALPHAD, 28 (2004), p. 141.

    Article  CAS  Google Scholar 

  39. SURDAT Database of Lead-Free Soldering Materials (Krakow, Poland: Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 2007), www.imim.pl/index.php?id=215.

  40. H. Ohtani and K. Ishida, J. Electron. Mater., 23 (1994), p. 747.

    Article  CAS  Google Scholar 

  41. W. Oelsen and K.F. Golücke, Arch. Eisenhüttenw., 29 (1958), p. 689.

    CAS  Google Scholar 

  42. S. Nagasaki and E. Fujita, J. Jpn. Inst. Met., 16 (1952), p. 317.

    CAS  Google Scholar 

  43. S.D. Muzaffar, J. Chem. Soc., 123 (1923), p. 2341.

    CAS  Google Scholar 

  44. T. Heumann, Z. Metallkd., 35 (1943), p. 211.

    Google Scholar 

  45. W. Mikula, L. Thomassen, and C. Upthegrove, Trans. AIME, 124 (1937), p. 111.

    Google Scholar 

  46. M.J. Pool et al., Z. Metallkde., 70 (1979), p. 656.

    CAS  Google Scholar 

  47. J. Veszelka, Mitt. Berg-Hüttemänn (Sopron, Hungary: Abt. Ung. Hochschule Berg-Forstw., 1932).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroupa, A., Dinsdale, A.T., Watson, A. et al. The development of the COST 531 lead-free solders thermodynamic database. JOM 59, 20–25 (2007). https://doi.org/10.1007/s11837-007-0084-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-007-0084-6

Keywords

Navigation