Skip to main content
Log in

Heat-stress induced sesquiterpenes of Chrysanthemum nankingense attract herbivores but repel herbivore feeding

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Plants are frequently exposed to heat stress as a result of global warming. Heat stress leads to a series of physiological responses including stress volatile elicitation, but how heat stress-induced volatile cues affect the behavior of herbivores is poorly understood. In this study, the polyphagous herbivore Spodoptera litura (tobacco cutworm, TCW) and Chrysanthemum nankingense were selected as the model to elucidate the interactions between herbivore behavior and heat stress-induced plant physiological changes. Photosynthetic characteristics and volatile emissions were measured in C. nankingense control plants (25 °C for 3 h), in C. nankingense exposed to moderate (35 °C for 3 h), and severe (45 °C for 3 h) heat stresses. Net photosynthetic rate (An) decreased by more than two-fold after exposure to 45 °C due to non-stomatal inhibition of photosynthesis. 45 °C treatment induced emissions of the camphor and (E)-β-caryophyllene. Exposure to 35 °C had minor effects on photosynthetic characteristics and did not induce terpene emissions. Using dual-choice olfactometer bioassays, we found that 45 °C treatment enhanced the attractiveness of the plants to TCW. Moreover, the leaf concentrations of nine sesquiterpenes were increased and the feeding of TCW was strongly inhibited after 45 °C treatment compared with control plants. Taken together, our study highlights the impact of heat stress on the behavior of the herbivore mediated by the accumulation and emission of sesquiterpenes and suggests altered pest-host interactions under future warmer climates. Modulation of terpenoid emissions and contents should be considered in developing future ecological pest control strategies in agricultural fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data are included in the manuscript.

References

  • Abbas F, Ke Y, Yu R, Yue Y, Amanullah S, Jahangir MM, Fan Y (2017) Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta 246:803–816

    Article  CAS  Google Scholar 

  • Agliassa C, Maffei ME (2018) Origanum vulgare terpenoids induce oxidative stress and reduce the feeding activity of Spodoptera littoralis. Int J Mol Sci 19:2805

    Article  Google Scholar 

  • Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends in Plant Sci 10:594–602

    Article  CAS  Google Scholar 

  • Al-Khatib K, Paulsen GM (1984) Mode of high temperature injury to wheat during grain development. Plant Physiol 61:363–368

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Res 98:541–550

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Asseng S, Foster I, Turner NC (2011) The impact of temperature variability on wheat yields. Glob Change Biol 17:997–1012

    Article  Google Scholar 

  • Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Doring P (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–474

    Article  CAS  Google Scholar 

  • Caballero-Gallardo K, Pino-Benitez N, Pajaro-Castro N, Stashenko E, Olivero-Verbel J (2014) Plants cultivated in Choco, Colombia, as source of repellents against Tribolium castaneum (Herbst). J Asia-Pac Entomol 17:753–759

    Article  CAS  Google Scholar 

  • CABI (2021) Invasive Species Compendium: Spodoptera litura (taro caterpillar) https://www.cabiorg/isc/datasheet/44520. Accessed 4 Nov 2021

  • Casal JJ, Balasubramanian S (2019) Thermomorphogenesis. Annu Rev Plant Biol 70:321–346

    Article  CAS  Google Scholar 

  • Chen F, Al-Ahmad H, Joyce B, Zhao N, Köllner TG, Degenhardt J, Stewart CN (2009) Within-plant distribution and emission of sesquiterpenes from Copaifera officinalis. Plant Physiol Biochem 47:1017–1023

    Article  CAS  Google Scholar 

  • Cheng X, Chen S, Chen F, Fang W, Deng Y, She L (2010) Interspecific hybrids between Dendranthema morifolium (Ramat) Kitamura and D nankingense (Nakai) Tzvel achieved using ovary rescue and their cold tolerance characteristics. Euphytica 172:101–108

    Article  Google Scholar 

  • Copolovici L, Niinemets Ü (2016) Environmental impacts on plant volatile emission. In: Blande J, Glinwood R (eds) Deciphering chemical language of plant communication, Signaling and communication in plants. Springer International Publishing, Berlin, pp 35–59

    Chapter  Google Scholar 

  • Copolovici L, Kännaste A, Pazouki L, Niinemets Ü (2012) Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. J Plant Physiol 169:664–672

    Article  CAS  Google Scholar 

  • Daussy J, Staudt M (2020) Do future climate conditions change volatile organic compound emissions from Artemisia annua? Elevated CO2 and temperature modulate actual VOC emission rate but not its emission capacity. Atmos Environ-X 7:e100082

    Google Scholar 

  • Dobson HEM (1994) Floral volatiles in insect biology. In: Insect–plant interactions. CRC Press, Boca Raton, pp 47–81

  • Duan Q, Kleiber A, Jansen K, Junker-Frohn LV, Kammerer B, Han G, Zimmer I, Rennenberg H, Schnitzler JP, Ensminger I, Gessler A, Kreuzwieser J (2019) Effects of elevated growth temperature and enhanced atmospheric vapour pressure deficit on needle and root terpenoid contents of two Douglas fir provenances. Environ Exp Bot 166:e103819

    Article  Google Scholar 

  • Eberl F, Hammerbacher A, Gershenzon J, Unsicker SB (2018) Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore. New Phytol 220:760–772

    Article  CAS  Google Scholar 

  • Gonalez AG, Jimenez IA, Ravelo AG, Coll JA, Lloria J (1997) Antifeedant activity of sesquiterpenes from Celastraceae. Biochem Syst Ecol 25:513–519

    Article  Google Scholar 

  • Grote R, Monson RK, Niinemets Ü (2013) Leaf-level models of constitutive and stress-driven volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions. Springer, Berlin, pp 315–355

    Chapter  Google Scholar 

  • Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J Geophys Res-Atmos 98:12609–12617

    Article  Google Scholar 

  • Guo Y, Zhang T, Zhong J, Ba T, Xu T, Zhang Q, Sun M (2020) Identification of the volatile compounds and observation of the glandular trichomes in Opisthopappus taihangensis and four species of chrysanthemum. Plants-Basel 9:14

    Google Scholar 

  • Hamann E, Blevins C, Franks SJ, Jameel MI, Anderson JT (2020) Climate change alters plant-herbivore interactions. New Phytol 229:1894–1910

    Article  Google Scholar 

  • Hamerlynck EP, Huxman TE, Loik ME, Smith SD (2000) Effects of extreme high temperature, drought and elevated CO2 on photosynthesis of the Mojave desert evergreen shrub, Larrea tridentata. Plant Ecol 148:183–193

    Article  Google Scholar 

  • Han S-H, Kim KW, Kim P-G (2014) Photosynthetic responses of populus alba×glandulosa to elevated CO2 concentration and air temperature. Kor J Agri Forest Meteorol 16:22–28

    Article  Google Scholar 

  • Hansen U, Seufert G (2003) Temperature and light dependence of β-caryophyllene emission rates. J Geophys Res-Atmos 108:4801

    Article  Google Scholar 

  • Harvey JA (2015) Conserving host-parasitoid interactions in a warming world. Curr Opin Insect Sci 12:79–85

    Article  Google Scholar 

  • Harvey JA, Heinen R, Gols R, Thakur MP (2020) Climate change-mediated temperature extremes and insects: from outbreaks to breakdowns. Glob Change Biol 26:6685–6701

    Article  Google Scholar 

  • Hoang TML, Tran TN, Nguyen TKT, Williams B, Wurm P, Bellairs S, Mundree S (2016) Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy-Basel 6:54

    Article  Google Scholar 

  • Huberty AF, Denno RF (2004) Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecol 85:1383–1398

    Article  Google Scholar 

  • Hüve K, Bichele L, Rasulov B, Niinemets Ü (2011) When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant Cell Environ 34:113–126

    Article  Google Scholar 

  • Hüve K, Bichele I, Ivanova H, Keerberg O, Pärnik T, Rasulov B, Tobias M, Niinemets Ü (2012) Temperature responses of dark respiration in relation to leaf sugar concentration. Physiol Plant 144:320–334

    Article  Google Scholar 

  • Hüve K, Bichele I, Kaldmäe H, Rasulov B, Valladares F, Niinemets Ü (2019) Responses of aspen leaves to heatflecks: both damaging and non-damaging rapid temperature excursions reduce photosynthesis. Plants 8:145

    Article  Google Scholar 

  • IPCC (2013) The climate change 2013: the physical science basis. In: Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, 1535 Cambridge and New York

  • Jagadish SVK, Way DA, Sharkey TD (2021) Scaling plant responses to high temperature from cell to ecosystem. Plant Cell Environ 44:1987–1991

    Article  CAS  Google Scholar 

  • Jiang Y, Ye J, Li S, Niinemets Ü (2017) Methyl jasmonate-induced emission of biogenic volatiles is biphasic in cucumber: a high-resolution analysis of dose dependence. J Exp Bot 68:4679–4694

    Article  CAS  Google Scholar 

  • Jiang Y, Ownley B, Chen F (2018) Terpenoids from weedy ricefield flatsedge (Cyperus iria L) are developmentally regulated and stress-induced, and have antifungal properties. Molecules 23:3149

    Article  Google Scholar 

  • Kanagendran A, Pazouki L, Li S, Liu B, Kännaste A, Niinemets Ü (2018) Ozone-triggered surface uptake and stress volatile emissions in Nicotiana tabacum ‘Wisconsin.’ J Exp Bot 69:681–697

    Article  CAS  Google Scholar 

  • Kask K, Kännaste A, Talts E, Copolovici L, Niinemets Ü (2016) How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra. Plant Cell Environ 39:2027–2042

    Article  CAS  Google Scholar 

  • Kawasaki K (1986) Activity rhythms and behavior of adult Spodoptera litura F. (Lepidoptera : Noctuidae) at night: factors determining male attraction time by females. Appl Entomol Zool 21:493–499

    Article  Google Scholar 

  • Kepova KD, Holzer R, Stoilova LS, Feller U (2005) Heat stress effects on ribulose-1, 5-bisphosphate carboxylase/oxygenase, rubisco binding protein and rubiscoactivase in wheat leaves. Biol Plant 49:521–525

    Article  Google Scholar 

  • Köllner TG, Held M, Lenk C, Hiltpold I, Turlings TCJ, Gershenzon J, Degenhardt J (2008) A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:482–494

    Article  Google Scholar 

  • Kong L, Chen Y, Wang Y (2019) Heat tolerance of different summer chrysanthemum varieties. Acta Horti Sinica 46:2437–2448

    Google Scholar 

  • Kuandal M, Bhatt V, Kumar R (2018) Elevated CO2 and temperature effect on essential oil content and composition of Valeriana jatamansi Jones. with organic manure application in a western himalayan region. J Essent Oil Bear Pl 21:1041–1050

    Article  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  CAS  Google Scholar 

  • Lemoine NP, Burkepile DE, Parker JD (2014) Variable effects of temperature on insect herbivory. PeerJ 2:376

    Article  Google Scholar 

  • Lim JR, Park SH, Moon HC, Kim J, Choi DC, Hwang CY, Lee KS (2012) An investigation and evaluation of insect pests in greenhouse vegetables in jeonbuk province. Kor J Appl Entomol 51:271–280

    Article  Google Scholar 

  • Llusià J, Peñuelas J (1999) Pinus halepensis and Quercus ilex terpene emission as affected by temperature and humidity. Biol Plant 42:317–320

    Article  Google Scholar 

  • Loreto F, Schnitzler JP (2010) Abiotic stress and induced BVOCs. Trends in Plant Sci 15:154–166

    Article  CAS  Google Scholar 

  • Loreto F, Barta C, Brilli F, Nogues I (2006) On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ 29:1820–1828

    Article  CAS  Google Scholar 

  • Ma L, Zhang Z-H, Yao B-Q, Ma Z, Huang X-T, Zhou B-R, Xu M-H, Guo J, Zhou H-K (2021) Effects of drought and heat on the productivity and photosynthetic characteristics of alpine meadow plants on the Qinghai-Tibetan Plateau. J Mt Sci 18:2079–2093

    Article  Google Scholar 

  • Mahajan M, Kuiry R, Pal PK (2020) Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. J Appl Res Med Aromat Plants 18:100255

    Google Scholar 

  • Maja MM, Kasurinen A, Holopainen T, Julkunen-Tiitto R, Holopainen JK (2016) The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen. Sci Total Environ 547:39–47

    Article  CAS  Google Scholar 

  • Mattson WJ, Haack RA (1987) The role of drought in outbreaks of plant-eating insects. Biosci 37:110–118

    Article  Google Scholar 

  • Monson RK, Fall R (1989) Isoprene emission from aspen leaves; the influence of environment and relation to photosynthesis and photorespiration. Plant Physiol 90:267–274

    Article  CAS  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    Article  CAS  Google Scholar 

  • Niinemets Ü (2010) Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci 15:145–153

    Article  CAS  Google Scholar 

  • Niinemets Ü, Seufert G, Steinbrecher R, Tenhunen JD (2002) A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species. New Phytol 153:257–276

    Article  CAS  Google Scholar 

  • Okereke CN, Kaurilind E, Liu B, Kanagendran A, Pazouki L, Niinemets Ü (2022) Impact of heat stress of varying severity on papaya (Carica papaya) leaves: major changes in stress volatile signatures, but surprisingly small enhancements of total emissions. Environ Exp Bot 195:e104777

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  Google Scholar 

  • Pazouki L, Kanagendran A, Li S, Kännaste A, Memari HR, Bichele R, Niinemets Ü (2016) Mono- and sesquiterpene release from tomato (Solanum lycopersicum) leaves upon mild and severe heat stress and through recovery: from gene expression to emission responses. Environ Exp Bot 132:1–15

    Article  CAS  Google Scholar 

  • Peñuelas J, Llusià J (2003) BVOCs: plant defense against climatic warming? Trends Plant Sci 8:105–109

    Article  Google Scholar 

  • Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett 39:L20714

    Article  Google Scholar 

  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    Article  CAS  Google Scholar 

  • Robert CAM, Erb M, Duployer M, Zwahlen C, Doyen GR, Turlings TCJ (2012) Herbivore-induced plant volatiles mediate host selection by a root herbivore. New Phytol 194:1061–1069

    Article  CAS  Google Scholar 

  • Ruiz-Vasquez L, Olmeda AS, Zuniga G, Villarroel L, Echeverri LF, Gonzalez-Coloma A, Reina M (2017) Insect antifeedant and ixodicidal compounds from Senecio adenotrichius. Chem Biodivers 14:e1600155

    Article  Google Scholar 

  • Sadeh D, Nitzan N, Shachter A, Chaimovitsh D, Dudai N, Ghanim M (2017) Whitefly attraction to rosemary (Rosmarinus officinialis L) is associated with volatile composition and quantity. PLoS ONE 12:e0177483

    Article  Google Scholar 

  • Sagheer A (2019) Study on the mechanism of high temperature inhibiting axillary bud growth of chrysanthemum, PhD Thesis. Beijing Forestry University

  • Sallas L, Luomala E-M, Utriainen J, Kainulainen P, Holopainen JK (2003) Contrasting effects of elevated carbon dioxide concentration and temperature on Rubisco activity, chlorophyll fluorescence, needle ultrastructure and secondary metabolites in conifer seedlings. Tree Physiol 23:97–108

    Article  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186

    Article  CAS  Google Scholar 

  • Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004) Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ 27:725–735

    Article  CAS  Google Scholar 

  • Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell and Environ 28:269–277

    Article  CAS  Google Scholar 

  • Staudt M, Bertin N (1998) Light and temperature dependence of the emission of cyclic and acyclic monoterpenes from holm oak (Quercus ilex L) leaves. Plant Cell Environ 21:385–395

    Article  CAS  Google Scholar 

  • Sun H, Zhang F, Chen S, Guan Z, Jiang J, Fang W, Chen F (2015) Effects of aphid herbivory on volatile organic compounds of Artemisia annua and Chrysanthemum morifolium. Biochem Syst Ecol 60:225–233

    Article  CAS  Google Scholar 

  • Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    Article  CAS  Google Scholar 

  • Turan S, Kask K, Kanagendran A, Li S, Anni R, Talts E, Rasulov B, Kännaste A, Niinemets Ü (2019) Lethal heat stress-dependent volatile emissions from tobacco leaves: what happens beyond the thermal edge? J Exp Bot 70:18

    Article  Google Scholar 

  • Visser PB, De Maagd RA, Jongsma MA (2007) Chrysanthemum. In: Nagata T, Lorz H, Widholm JM (eds) Biotechnology in agriculture and forestry. Springer, Berlin, pp 253–272

    Google Scholar 

  • Wang Q, Xin Z, Li J, Hu L, Lou Y, Lu J (2015) (E)-β-caryophyllene functions as a host location signal for the rice white-backed planthopper Sogatella furcifera. Physiol Mol Plant Pathol 91:106–112

    Article  CAS  Google Scholar 

  • Wang QL, Chen JH, He NY, Guo FQ (2018) Metabolic reprogramming in chloroplasts under heat stress in plants. Int J Mol Sci 19:849

    Article  Google Scholar 

  • Wang F, Park Y-L, Gutensohn M (2021) Glandular trichome-derived mono- and sesquiterpenes of tomato have contrasting roles in the interaction with the potato aphid Macrosiphum euphorbiae. J Chem Ecol 47:204–214

    Article  CAS  Google Scholar 

  • Wearing CH (1967) Studies on the relations of insect and host plant: II Effects of water stress in host plants on infestation by Aphis fabae (Scop), Myzus persicae (Sulz) and Brevicoryne brassicae (L). Nature 213:1051–1052

    Article  Google Scholar 

  • Xia X, Shao Y, Jiang J, Ren L, Chen F, Fang W, Guan ZY, Chen SM (2014) Gene expression profiles responses to aphid feeding in chrysanthemum (Chrysanthemum morifolium). BMC Genomics 15:1050

    Article  Google Scholar 

  • Yuan JS, Köllner TG, Wiggins G, Grant J, Degenhardt J, Chen F (2008) Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. Plant J 55:491–503

    Article  CAS  Google Scholar 

  • Zhang K, Jiang Y, Zhao H, Köllner TG, Chen S, Chen F, Chen F (2020) Diverse terpenoids and their associated antifungal properties from roots of different cultivars of Chrysanthemum morifolium Ramat. Molecules 25:2083

    Article  CAS  Google Scholar 

  • Zhu L, Bloomfield KJ, Hocart CH, Egerton JJG, O’Sullivan OS, Penillard A, Weerasinghe LK, Atkin OK (2018) Plasticity of photosynthetic heat tolerance in plants adapted to thermally contrasting biomes. Plant Cell Environ 41:1251–1262

    Article  CAS  Google Scholar 

  • Zou M, Yuan L, Zhu S, Liu S, Ge J, Wang C (2017) Effects of heat stress on photosynthetic characteristics and chloroplast ultrastructure of a heat-sensitive and heat-tolerant cultivar of wucai (Brassica campestris L). Acta Physiol Plant 39:1–10

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the National Natural Science Foundation of China (31872140) and the Priority Academic Program Development of Jiangsu higher education institutions, PAPD. Also, we are grateful to the Central Laboratory of the College of Horticulture, Nanjing Agricultural University for providing the instruments and equipment. In addition, we thank Dr. Yuehua Ma (Central laboratory of College of Horticulture, Nanjing Agricultural University) for assistance in using Agilent Intuvo 9000 GC system coupled with 7000D Triple Quadrupole mass detector.

Funding

This study was supported by the National Natural Science Foundation of China, 31872140, to Yifan Jiang

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Jiang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Handling Editor: Sylvain Pincebourde.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, D., Guan, Y., Jiang, L. et al. Heat-stress induced sesquiterpenes of Chrysanthemum nankingense attract herbivores but repel herbivore feeding. Arthropod-Plant Interactions 17, 111–122 (2023). https://doi.org/10.1007/s11829-022-09940-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-022-09940-x

Keywords

Navigation