Skip to main content
Log in

Root nematode infection enhances leaf defense against whitefly in tomato

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The foliar response to different herbivores sharing the same hosts is an important topic for the study of plant-insect interactions. Plants evolve local and systemic resistant strategies to cope with herbivores. Many researchers have characterized the mechanisms of leaf responses to insect infestation; however, the fact that roots serve as systemic resistance modulators to leaf herbivores has been widely ignored. Here, we report that tomato (Solanum lycopersicum) plants infected with southern root-knot nematodes (Meloidogyne incognita)—which feed on the roots to form nodules—enhanced leaf defenses against aboveground attackers, specifically, the whitefly (Bemisia tabaci). Our results show that nematode infection reduced the whitefly population abundance because of conferring a stronger SA-dependent defense pathway against whitefly than in tomato plants without nematode infection. Meanwhile, nematode-infected tomato plant also activated the foliar JA-dependent defense pathway at 4 h after whitefly infestation. However, the foliar JA-dependent defense under whitefly infestation alone was suppressed, with the JA content being nearly 30 % lower than that in tomato plants co-infected with nematodes and whiteflies. Furthermore, nematode infection significantly decreased the plant nitrogen concentration in leaves and roots. As a result, nematode infection reduced the number of whiteflies by enhancing foliar SA-dependent defense, activating JA-dependent defense and decreasing nitrogen nutrition. Our results suggest that underground nematode infection significantly enhances the defense ability of tomato plants against whitefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alba JM, Schimmel BCJ, Glas JJ, Ataide L, Pappas ML, Villarroel CA, Robert CS, Maurice WS, Merijn RK (2015) Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk. New Phytol 205:828–840

    Article  CAS  PubMed  Google Scholar 

  • Annapurna K, Kumar A, Kumar LV, Govindasamy V, Bose P, Ramadoss D (2013) PGPR-induced systemic resistance (ISR) in plant disease management. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Berlin, pp 405–425

    Chapter  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 7:478–486

    Article  Google Scholar 

  • Bezemer TM, De Deyn GB, Bossinga TM, van Dam NM, Harvey JA, Van der Putten WH (2005) Soil community composition drives aboveground plant–herbivore–parasitoid interactions. Ecol Lett 8:652–661

    Article  Google Scholar 

  • Bhattarai KK, Xie QG, Mantelin S, Bishnoi U, Girke T, Navarre DA, Kaloshian I (2008) Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signaling pathway. Mol Plant Microbe Interact 21:1205–1214

    Article  CAS  PubMed  Google Scholar 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Pieterse CM, Mauch-Mani B (2002) Priming in plant–pathogen interactions. Trends Plant Sci 7:210–216

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJ, Flors V, García-Agustín P, Jakab G, Mauch F, Newman M-A, Pieterse CM, Poinssot B, Pozo MJ (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Crafts-Brandner SJ (2002) Plant nitrogen status rapidly alters amino acid metabolism and excretion in Bemisia tabaci. J Insect Physiol 48:33–41

    Article  CAS  PubMed  Google Scholar 

  • Dalton R (2006) Whitefly infestations: the christmas invasion. Nature 443:898–900

    Article  CAS  PubMed  Google Scholar 

  • Davis EL, Hussey RS, Baum TJ (2004) Getting to the roots of parasitism by nematodes. Trends Parasitol 20:134–141

    Article  PubMed  Google Scholar 

  • De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19

    Article  PubMed  Google Scholar 

  • Devadas SK, Enyedi A, Raina R (2002) The Arabidopsis hrl1 mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signalling in cell death and defence against pathogens. Plant J 30:467–480

    Article  CAS  PubMed  Google Scholar 

  • Eisenback JD, Hirschmann H, Triantaphyllou AC (1980) Morphological comparison of Meloidogyne female head structures, perineal patterns, and stylets. J Nematol 12:300–313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erb M, Ton J, Degenhardt J, Turlings TC (2008) Interactions between arthropod-induced aboveground and belowground defenses in plants. Plant Physiol 146:867–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erb M, Flors V, Karlen D, De Lange E, Planchamp C, D’Alessandro M, Turlings TC, Ton J (2009a) Signal signature of aboveground-induced resistance upon belowground herbivory in maize. Plant J 59:292–302

    Article  CAS  PubMed  Google Scholar 

  • Erb M, Lenk C, Degenhardt J, Turlings TC (2009b) The underestimated role of roots in defense against leaf attackers. Trends Plant Sci 14:653–659

    Article  CAS  PubMed  Google Scholar 

  • Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008) Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol 146:818–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gheysen G, Fenoll C (2002) Gene expression in nematode feeding sites. Annu Rev Phytopathol 40:191–219

    Article  CAS  PubMed  Google Scholar 

  • Gheysen G, Mitchum MG (2011) How nematodes manipulate plant development pathways for infection. Curr Opinion Plant Biol 14:415–421

    Article  Google Scholar 

  • Guo HJ, Sun Y, Li Y, Tong B, Harris M, Zhu-Salzman K, Ge F (2013) Pea aphid promotes amino acid metabolism both in Medicago truncatula and bacteriocytes to favor aphid population growth under elevated CO2. Global Change Biol 19:3210–3223

    Article  Google Scholar 

  • Halim VA, Altmann S, Ellinger D, Eschen-Lippol L, Miersch O, Scheel D, Rosahl S (2009) PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid. Plant J 57:230–242

    Article  CAS  PubMed  Google Scholar 

  • Hamamouch N, Li C, Seo PJ, Park C-M, El Davis (2011) Expression of Arabidopsis pathogenesis-related genes during nematode infection. Mol Plant Pathol 12:355–364

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13:264–272

    Article  CAS  PubMed  Google Scholar 

  • Hofmann J, El Ashry AEN, Anwar S, Erban A, Kopka J, Grundler F (2010) Metabolic profiling reveals local and systemic responses of host plants to nematode parasitism. Plant J 62:1058–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hol WG, Macel M, van Veen JA, van der Meijden E (2004) Root damage and aboveground herbivory change concentration and composition of pyrrolizidine alkaloids of Senecio jacobaea. Basic Appl Ecol 5:253–260

    Article  CAS  Google Scholar 

  • Hol WHG, de Boer W, Termorshuizen AJ, Meyer KM, Schneider JHM, van Dam NM, van Veen JA, van der Putten WH (2010) Reduction of rare soil microbes modifies plant-herbivore interactions. Ecol Lett 13:292–301

    Article  PubMed  Google Scholar 

  • Hooper DJ, Hallmann J, Subbotin SA (2005) Methods for extraction, processing and detection of plant and soil nematodes. In: Sikora RA, Bridge J (eds) Luc M. Plant parasitic nematodes in subtropical and tropical agriculture, CABI, pp 53–86

    Google Scholar 

  • Huberty AF, Denno RF (2004) Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85:1383–1398

    Article  Google Scholar 

  • Inbar M, Gerling D (2008) Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Annu Rev Entomol 53(1):431–448

    Article  CAS  PubMed  Google Scholar 

  • Jammes F, Lecomte P, Almeida-Engler J, Bitton F, Martin-Magniette M-L, Renou JP, Abad P, Favery B (2005) Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. Plant J 44:447–458

    Article  CAS  PubMed  Google Scholar 

  • Johnson SN, Clark KE, Hartley SE, Jones TH, McKenzie SW, Koricheva J (2012) Aboveground-belowground herbivore interactions: a meta-analysis. Ecology 93:2208–2215

    Article  PubMed  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Kaplan I, Halitschke R, Kessler A, Rehill BJ, Sardanelli S, Denno RF (2008a) Physiological integration of roots and shoots in plant defense strategies links above- and belowground herbivory. Ecol Lett 11:841–851

    Article  PubMed  Google Scholar 

  • Kaplan I, Halitschke R, Kessler A, Sardanelli S, Denno RF (2008b) Constitutive and induced defenses to herbivory in above- and belowground plant tissues. Ecology 89:392–406

    Article  PubMed  Google Scholar 

  • Kaplan I, Sardanelli S, Rehill BJ, Denno RF (2011) Toward a mechanistic understanding of competition in vascular-feeding herbivores: an empirical test of the sink competition hypothesis. Oecologia 166:627–636

    Article  PubMed  Google Scholar 

  • Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146:839–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koornneef A, Ritsema T, Verhage A, Den Otter FC, Van Loon LC, Pieterse CM (2008) Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol 147:1358–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyndt T, Nahar K, Haegeman A, De Vleesschauwer D, Hofte M, Gheysen G (2012) Comparing systemic defence-related gene expression changes upon migratory and sedentary nematode attack in rice. Plant Biol 14:73–82

    Article  CAS  PubMed  Google Scholar 

  • Lee GI, Howe GA (2003) The tomato mutant spr1 is defective in systemin perception and the production of a systemic wound signal for defense gene expression. Plant J 33:567–576

    Article  CAS  PubMed  Google Scholar 

  • Li R, Weldegergis BT, Li J, Jung C, Qu J, Sun Y, Qian H, Tee C, van Loon JJ, Dicke M (2014) Virulence factors of geminivirus interact with myc2 to subvert plant resistance and promote vector performance. Plant Cell 26:4991–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Masters G, Brown V, Gange A (1993) Plant mediated interactions between above- and below-ground insect herbivores. Oikos 66:148–151

    Article  Google Scholar 

  • Maung MO (1959) Effects of a Root-knot Nematode Meloidogyne Incognita Acrita Chitwood 1949 and a Stubby Root Nematode Trichodorus Christiei Allen 1957 on the Nutrient Status of Tomato, Lycopersicon Esculentum Hort. Var. Chesapeake

  • Molinari S, Loffredo E (2006) The role of salicylic acid in defense response of tomato to root-knot nematodes. Physiol Mol Plant Pathology 68:69–78

    Article  CAS  Google Scholar 

  • Mur LAJ, Kenton P, Atzorn R, Miersch O, Waster-nack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress. Plant Physiol 140:249–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahar K, Kyndt T, De Vleesschauwer D, Hofte M, Gheysen G (2011) The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiol 157:305–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Ann Rev Phytopathol 52:347–375

    Article  CAS  Google Scholar 

  • Ponder KL, Pritchard J, Harrington R, Bale JS (2000) Difficulties in location and acceptance of phloem sap combined with reduced concentration of phloem amino acids explain lowered performance of the aphid Rhopalosiphum padi on nitrogen deficient barley (Hordeum vulgare) seedlings. Entomol Exp Appl 97:203–210

    Article  Google Scholar 

  • Pozo MJ, Van Der Ent S, Van Loon LC, Pieterse CMJ (2008) Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol 180:511–523

    Article  CAS  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Scalschi L, Vicedo B, Camañes G, Fernandez-Crespo E, Lapeña L, González-Bosch C, García-Agustín P (2013) Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways. Mol Plant Pathol 14:342–355

    Article  CAS  PubMed  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opi Plant Biol 8:369–377

    Article  CAS  Google Scholar 

  • Soler R, Van der Putten WH, Harvey JA, Vet LE, Dicke M, Bezemer TM (2012) Root herbivore effects on aboveground multitrophic interactions: patterns, processes and mechanisms. J Chem Ecol 38:755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soler R, Erb M, Kaplan I (2013) Long distance root-shoot signaling in plant–insect community interactions. Trends Plant Sci 18:149–156

    Article  CAS  PubMed  Google Scholar 

  • Taylor DP, Netscher C (1974) An improved technique for preparing perineal patterns of meloidogyne spp. Nematologica 20:268–269

    Article  Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trend Plant Sci 17:260–270

    Article  CAS  Google Scholar 

  • Van Dam NM, Raaijmakers CE, Van Der Putten WH (2005) Root herbivory reduces growth and survival of the shoot feeding specialist Pierisr apae on Brassica nigra. Entomol Exp Appl 115:161–170

    Article  Google Scholar 

  • Van Wees SC, De Swart EAM, Van Pelt JA, Van Loon LC, Pieterse CM (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate-and jasmonate-dependent defense pathways in Arabidopsis thaliana. PNAS 97:8711–8716

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Curr Opinion Plant Biol 11:443–448

    Article  Google Scholar 

  • Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Ann Rev Phytopathol 47:177–206

    Article  CAS  Google Scholar 

  • Weller DM, Mavrodi DV, van Pelt JA, Pieterse CM, van Loon LC, Bakker PA (2012) Induced systemic resistance (ISR) in Arabidopsis thaliana against Pseudomonas syringe pv. tomato by 2, 4-diacetylphloroglucinol-producting Pseudomonas fluorescens. Phytopathology 403:403–412

    Article  Google Scholar 

  • Williamson VM, Hussey RS (1996) Nematode pathogenesis and resistance in plants. Plant Cell 8:1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wondafrash M, van Dam NM, Tytgat TOG (2013) Plant systemic induced responses mediate interactions between root parasitic nematodes and aboveground herbivorous insects. Front Plant Sci 4:61–64

    Article  Google Scholar 

  • Wurst S, van der Putten WH (2007) Root herbivore identity matters in plant-mediated interactions between root and shoot herbivores. Basic Appl Ecol 8:491–499

    Article  Google Scholar 

  • Yan L, Zhai Q, Wei J, Li S, Wang B, Huang T, Du M, Sun J, Kang L, Li C-B (2013) Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet 9:e1003964

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Luan JB, Qi JF, Huang CJ, Li M, Zhou XP, Liu SS (2012) Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Mol Ecol 21:1294–1304

    Article  PubMed  Google Scholar 

  • Zhang PJ, Broekgaarden C, Zheng SJ, Snoeren TA, Loon JJ, Gols R, Dicke M (2013) Jasmonate and ethylene signaling mediate whitefly-induced interference with indirect plant defense in Arabidopsis thaliana. New Phytol 197:1291–1299

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Nature Science Fund of China (no. 31370438) and the R&D Special Fund for Public Welfare Industry (Agriculture 201303019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ge.

Additional information

Handling Editor: Heikki Hokkanen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Ge, F. Root nematode infection enhances leaf defense against whitefly in tomato. Arthropod-Plant Interactions 11, 23–33 (2017). https://doi.org/10.1007/s11829-016-9462-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-016-9462-8

Keywords

Navigation