Skip to main content

PGPR-Induced Systemic Resistance (ISR) in Plant Disease Management

  • Chapter
  • First Online:
Bacteria in Agrobiology: Disease Management

Abstract

Induced resistance is a physiological “state of enhanced defensive capacity” elicited by plant growth promoting rhizobacteria (PGPR) such as Pseudomonas putida, Serratia marcescens, Flavomonas oryzihabitans, Bacillus pumulus, etc. where the plant’s innate defences potentiated against subsequent biotic challenges becomes a popular means of protection of the plant from pathogens through induced systemic resistance (ISR). A number of bacterial determinants act as resistance elicitor compound in the development of resistance in plants such as siderophore, pyoverdin, bacterial SA, fucose, rhamnose (lipopolysaccharide) and flagellins reported so far. The transcriptional activation of PR genes is differentially regulated by NPR1 which is not only required for the SA-dependent expression of PR genes that are activated during SAR, but also for the JA- and ET-dependent activation of defence responses resulting from rhizobacteria-mediated ISR. The enzymes that have been associated with ISR includes phenylalanine ammonia lyase (PAL), chitinase, β-1,3-glucanase, peroxidase (PO), polyphenol oxidase (PPO), superoxide dismutase (SOD), catalase (CAT), lipoxygenase (LOX), ascorbate peroxidase (APX) and proteinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alabouvette C, Lemanceau P, Steinberg C (1993) Recent advances in the biological control of fusarium wilts. Pest Sci 37:365–373

    Article  Google Scholar 

  • Alstrom P (1991) Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterisation with rhizosphere pseudomonads. J Gen Appl Microbiol 37:495–501

    Article  Google Scholar 

  • Archana S, Prabakar K, Raguchander T, Hubbali M, Valamarthi P, Prakasham V (2011) Defence responses of Grapevine to Plasmopara viticola Induced by Azoxystrobin and Pseudomonas fluorescence. Int J Sustain Agric 3:30–38

    Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant Microbe Interact 15:1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Babalola O (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  PubMed  CAS  Google Scholar 

  • Bharathi R, Vivekananthan R, Harish S, Ramanathan A, Samiyappan R (2004) Rhizobacteria-based bioformulations for the management of fruit rot infection in chillies. Crop Prot 23: 835–843

    Article  Google Scholar 

  • Bleecker AB, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is non-responsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592

    PubMed  CAS  Google Scholar 

  • Cartieaux F, Thibaud MC, Zimmerli L, Lessard P, Sarrobert C, David P, Gerbaud A, Robaglia C, Somerville S, Nussaume L (2003) Transcriptome analysis of Arabidopsis colonized by a plant growth promoting rhizobacterium reveals a general effect on disease resistance. Plant J 36: 177–188

    Article  PubMed  CAS  Google Scholar 

  • Cartieaux F, Contesto C, Gallou A, Desbrosses G, Kopta J, Taconnat L, Renou JP, Touraine B (2008) Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium sp. ORS278 and Pseudomonas syringae pv. tomato DC3000 leads to complex transcriptome changes. Mol Plant Microbe Interact 21:244–259

    Article  PubMed  CAS  Google Scholar 

  • Chakravarty G, Kalita MC (2011) Comparative evaluation of organic formulations of Pseudomonas fluorescens based biopesticides and their application in the management of bacterial wilt of brinjal (Solanum melongena L.). Afr J Biotechnol 10:7174–7182

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Damayanti TA, Katerina T (2008) Protection of hot pepper against multiple infection of viruses by utilizing root colonizing bacteria. J ISSAAS 14:92–100

    Google Scholar 

  • De Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    Article  PubMed  Google Scholar 

  • De Meyer G, Audenaert K, Hofte M (1999) Pseudomonas aeruginosa 7NSK2-Induced systemic resistance in tobacco depends on in plant salicylic acid but not associated with PR1a Expression. Eur J Plant Pathol 150:513–517

    Article  Google Scholar 

  • Dean RA, Kuc J (1985) Induced systemic protection in plants. Trends Biotechnol 3:125–129

    Article  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol Res 159:371–394

    Article  PubMed  CAS  Google Scholar 

  • Doke N, Ramirez AV, Tomiyama K (1987) Systemic induction of resistance in potato Phytophthora infestans by local treatment with hyphal wall components of the fungus. J Phytopathol 119:232–239

    Article  Google Scholar 

  • Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P (1998) Implication of systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. Eur J Plant Pathol 104:903–910

    Article  Google Scholar 

  • Elad Y, Baker R (1985) The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium spp. by Pseudomonas spp. J Phytopathol 75:1053–1059

    Article  CAS  Google Scholar 

  • Elad Y, Chet I (1987) Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. J Phytopathol 77:190–195

    Article  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  PubMed  CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negmtto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt R (1999) Induced disease resistance: how do induced plants stop pathogens? Physiol Mol Plant Pathol 55:77–84

    Article  CAS  Google Scholar 

  • Herrera G, Snyman SJ, Thomson JA (1994) Construction of a Bioinsecticidal strain of Pseudomonas fluorescens active against the Sugarcane Borer, Eldana saccharina. Appl Environ Microbiol 60: 682–690

    PubMed  CAS  Google Scholar 

  • Hoffland E, Pieterse CMJ, Bik L, Van Pelt JA (1995) Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiol Mol Plant Pathol 46: 309–320

    Article  CAS  Google Scholar 

  • Hoffland E, Hakulinen J, van Pelt JA (1996) Comparison of systemic resistance induced by avirulent and non-pathogenic Pseudomonas species. Phytopathology 86:757–762

    Article  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:851–858

    Article  PubMed  CAS  Google Scholar 

  • Jaizme-Vega MC, Rodríguez-Romero AS, Piñero Guerra MS (2004) Potential use of rhizobacteria form the Bacillus genus to stimulate the plant growth of micro-propagated banana. Fruits 59:83–90

    Article  Google Scholar 

  • Joo GJ, Kim YM, Lee KIJ, Song S, Rhee IK (2004) Growth promotion of red pepper seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides, Bacillus pumilus. Biotechnol Lett 26:487–491

    Article  PubMed  CAS  Google Scholar 

  • Kamalakaman A, Mohan L, Kavitha K, Harish S, Radjacommare R, Nakkeeran S, Parthiban VK, Karuppiah R, Angayarkanni T (2003) Enhancing resistance to stem and stolen rot of peppermint (Mentha piperita Lin.) using biocontrol agents. Acta Phytopathol Ent Hung 38:293–305

    Article  Google Scholar 

  • Keen NT, Yoshikawa M (1983) β-1, 3-endoglucanase from soybean releases elicitor-active carbohydrates from fungus cell walls. Plant Physiol 71:460–465

    Article  PubMed  CAS  Google Scholar 

  • Kessmann H, Staub T, Ligon J, Oostendorp M, Ryals J (1994) Activation of systemic acquired disease resistance in plants. Eur J Plant Pathol 100:359–369

    Article  Google Scholar 

  • Khalimi K, Suprapta DN (2011) Induction of plant resistance against Soybean stunt virus using some formulations of Pseudomonas aeruginosa. J ASSAAS 17:98–105

    Google Scholar 

  • Kirankumar R, Jagadeesh KS, Krishnaraj PU, Patil MS (2008) Enhanced growth promotion of tomato and nutrient uptake by plant growth promoting rhizobacterial isolates in presence of tobacco mosaic virus pathogen. Karnataka J Agric Sci 21:309–311

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol 2. Station de Pathologie Vegetale et Phytobacteriologie, INRA, Angers, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth M (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Kloepper JW, Tuzun S, Kuc J (1992) Proposed definitions related to induced disease resistance. Biocontrol Sci Technol 2:349–351

    Article  Google Scholar 

  • Kloepper JW, Tuzun S, Liu L, Wei G (1993) Plant growth promoting rhizobacteria as inducers of systemic disease resistance. In: Lumsden RD, Vaughn JL (eds) Pest management: biologically based technologies. American Chemical Society, Washington, DC, pp 156–165

    Google Scholar 

  • Knoester M, Pieterse CMJ, Bol JF, Van Loon LC (1999) Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signalling at the site of application. Mol Plant Microbe Interact 12:720–727

    Article  PubMed  CAS  Google Scholar 

  • Koch KE, Nolte KD, Duke ER, McCarty DR, Avigne WT (1992) Sugar levels modulate differential expression of maize sucrose synthase genes. Plant Cell 4:59–69

    PubMed  CAS  Google Scholar 

  • Kuc J (1982) Induced immunity to plant disease. Bioscience 32:854–860

    Article  Google Scholar 

  • Lamers JG, Schippers B, Geels FP (1988) Soil-borne disease of wheat in the Netherlands and results of seed bacterization with pseudomonads against Gaeumannomyces graminis var. tritici. In: Jorna ML, Slootmaker LA (eds) Cereal breeding related to integrated cereal production. Pudoc, Wageningen, pp 134–139

    Google Scholar 

  • Lawton K, Weymann K, Friedrich L, Vernooij B, Uknes S, Ryals J (1995) Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol Plant Microbe Interact 8:863–870

    Article  PubMed  CAS  Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur J Plant Pathol 101:655–664

    Article  Google Scholar 

  • Leeman M, den Ouden FM, van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155

    Article  CAS  Google Scholar 

  • Lemanceau P, Bakker PAHM, De Kogel WJ, Alabouvette C, Schippers B (1992) Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by non-pathogenic Fusarium oxysporum Fo47. Appl Environ Microbiol 58: 2978–2982

    PubMed  CAS  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995a) Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85: 843–847

    Article  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995b) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology 85:695–698

    Article  Google Scholar 

  • Lynch JM, Whipps JM (1991) Substrate flow in the rhizosphere. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic, Dordrecht, pp 15–24

    Chapter  Google Scholar 

  • Malamy J, Klessig DF (1992) Salicylic acid and plant disease resistance. Plant J 2:643–654

    Article  CAS  Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    Article  PubMed  CAS  Google Scholar 

  • Mariutto M, Duby F, Adam A, Bureau C, Fauconnier M-L, Ongena M, Thonart P, Dommes J (2011) The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms. BMC Plant Biol 11:29. doi:10.1186/1471-2229-11-29

    Article  PubMed  CAS  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHAO: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146

    Article  CAS  Google Scholar 

  • Maurhofer M, Reimann C, Schmidli-Sacherer P, Heeb SD, Defago G (1998) Salicylic acid biosynthesis genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678–684

    Article  PubMed  CAS  Google Scholar 

  • Metraux JP, Signer H, Ryals J, Ward E, Wyss‐Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance. Science 250:1004–1006

    Article  PubMed  CAS  Google Scholar 

  • Metraux JP, Ahl-Goy P, Staub T, Speich J, Steinemann A, Ryals J, Ward E (1991) Induced systemic resistance in cucumber in response to 2,6-dichloro-isonicotinic acid and pathogens. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions, vol 1. Kluwer, Dordrecht, pp 432–439

    Google Scholar 

  • Murphy JF, Zehnder GW, Schuster DJ, Sikora EJ, Polston JE, Kloepper JW (2000) Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis 84:779–784

    Article  Google Scholar 

  • Nandakumar R, Babu S, Viswanathan R, Sheela J, Raguchander T, Samiyappan R (2001) A new bioformulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. Biocontrol 46:493–510

    Article  Google Scholar 

  • Nawrath C, Metraux JP (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393–1404

    PubMed  CAS  Google Scholar 

  • Ongena M, Giger A, Jacques P, Dommes J, Thonart P (2002) Study of bacterial determinants involved in the induction of systemic resistance in bean by Pseudomonas putida BTP1. Eur J Plant Pathol 108:187–196

    Article  CAS  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  PubMed  CAS  Google Scholar 

  • Oostendorp M, Sikora RA (1989) Seed-treatment with antagonistic rhizobacteria for the suppression of Heterodera schachtii early root infection of sugar beet. Rev Nematol 12:77–83

    Google Scholar 

  • Oostendorp M, Sikora RA (1990) In vitro inter-relationship between rhizosphere bacteria and Heterodera schachtii. Rev Nematol 13:269–274

    Google Scholar 

  • Pierson LS, Thomashow LS (1992) Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84. Mol Plant Microbe Interact 5:330–339

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CMJ, van Loon LC (1999) Salicylic acid‐independent plant defence pathways. Trends Plant Sci 4:52–58

    Article  PubMed  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van Pelt JA, Ton J, Parchmann S, Mueller MJ, Buchala AJ, Metraux JP, Van Loon LC (2000) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Pathol 57:123–134

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Ton J, Van Loon LC (2001) Cross-talk between plant defence signalling pathways: boost or burden? Ag Biotech Net 3, ABN 068

    Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Ton J, Van Pelt JA, Van Loon LC (2002) Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol 4:535–544

    Article  CAS  Google Scholar 

  • Press CM, Wilson M, Tuzun S, Kloepper JW (1997) Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol Plant Microbe Interact 10:761–768

    Article  CAS  Google Scholar 

  • Qingwen Z, Ping L, Gang W, Qingnian C (1998) On the biochemical mechanism of induced resistance of cotton to cotton bollworm by cutting of young seedling at plumular axis. Acta Phytophyl Sinica 25:209–212

    Google Scholar 

  • Ramamoorthy V, Raguchander T, Samiyappa R (2002) Enhancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent pseudomonads. Eur J Plant Pathol 108:429–441

    Article  CAS  Google Scholar 

  • Raupach GS, Liu L, Murphy JF, Tuzun S, Kloepper JW (1996) Induced resistance in cucumber and tomato against cucumber mosaic virus using plant growth promoting rhizobacteria. Plant Dis 80:891–894

    Article  Google Scholar 

  • Raupach GS, Taensa I, Kloepper JW (2000) Biocontrol of cucumber diseases in the field by plant growth-promoting rhizobacteria with and without methyl bromide fumigation. Plant Dis 84: 1073–1075

    Article  CAS  Google Scholar 

  • Ross AF (1961a) Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14:329–339

    Article  PubMed  CAS  Google Scholar 

  • Ross AF (1961b) Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340–358

    Article  PubMed  CAS  Google Scholar 

  • Ryals J, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Michelle DH (1996) Systemic acquired resistance. Plant Cell 8:1809–18019

    PubMed  CAS  Google Scholar 

  • Saikia R, Yadav M, Varghese S, Singh BP, Gogoi DK, Kumar R, Arora DK (2006) Role of riboflavin in induced resistance against Fusarium wilt and Charcoal rot diseases of chickpea. J Plant Pathol 24:339–347

    Google Scholar 

  • Santhi A, Sivakumar V (1995) Biocontrol potential of Pseudomonas fluorescens (Migula) against root-knot nematode, Meloidogyne incognita Chitwood, 1949 on tomato. J Biol Control 9:113–115

    Google Scholar 

  • Saravanakumar D, Vijayakumar C, Kumar N, Samiyappan R (2007) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot 26:556–565

    Article  Google Scholar 

  • Schneider S, Ullrich WR (1994) Differential induction of resistance and enhanced enzyme activities in cucumber and tobacco caused by treatment with various abiotic and biotic inducers. Physiol Mol Plant Pathol 45:291–304

    Article  CAS  Google Scholar 

  • Senthilkumar M, Govindasamy V, Annapurna K (2007a) Role of antibiosis on charcoal rot disease suppression by soybean endophytic bacterium Paenibacillus sp. strain HKA-15. Curr Microbiol 55:25–29

    Article  PubMed  CAS  Google Scholar 

  • Senthilkumar M, Govindasamy V, Dureja P, Annapurna K (2007b) Purification and partial characterization of antifungal peptides from soybean endophyte-Paenibacillus sp strain HKA-15. J Plant Biochem Biotechnol 16:131–134

    CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2004) Systemic resistance in tomato induced by biocontrol bacteria against the root-knot nematode, Meloidogyne javanica is independent of salicylic acid production. J Phytopathol 152:48–54

    Article  Google Scholar 

  • Siddiqui ZA, Baghel G, Akhtar MS (2007) Biocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentil. World J Microbiol Biotechnol 23:435–441

    Article  CAS  Google Scholar 

  • Sikora RA (1992) Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annu Rev Phytopathol 30:245–270

    Article  Google Scholar 

  • Sikora RA, Hofmann-Hergarten S (1992) Importance of plant health-promoting rhizobacteria for the control of soil-borne fungal diseases and plant parasitic nematodes. Arab J Plant Prot 10: 53–58

    Google Scholar 

  • Spiegel Y, Cohn E, Galper S, Sharon E, Chet I (1991) Evaluation of a newly isolated bacterium, Pseudomonas chitinolytica sp. nov., for controlling the root-knot nematode Meloidogyne javanica. Biocontrol Sci Technol 1:115–125

    Article  Google Scholar 

  • Staswick PE, Su W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 89: 6837–6840

    Article  PubMed  CAS  Google Scholar 

  • Sticher L, Mauch-Mani B, Metraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Article  PubMed  CAS  Google Scholar 

  • Stock CA, Mcloughlin TJ, Klein JA, Adang M (1990) Expression of a Bacillus thuringiensis crystal protein gene in Pseudomonas cepacia 526. Can J Microbiol 36:879–884

    Article  CAS  Google Scholar 

  • Swarnakumari N, Lakshmanan PL (1999) Effect of organic amendments and Pseudomonas fluorescens on rice-root nematode, Hirschmanniella oryzae. In: International seminar on integrated pest management, Hyderabad, India, p 101

    Google Scholar 

  • Swarnakumari N, Lakshmanan PL, Samiyappan R (1999) Screening of different isolates of Pseudomonas fluorescens against rice-root nematode, Hirschmanniella oryzae. In: International seminar on integrated pest management, Hyderabad, India, p 102

    Google Scholar 

  • Thomas X, Destoumieux-Garzon D, Peduzzi J, Afonso C, Blond A, Birlirakis N, Goulard C, Dubost L, Thai R, Tabet JC, Rebuffat S (2004) Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J Biol Chem 279: 28233–28242

    Article  PubMed  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1995) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Stacey G, Keen NT (eds) Plant-microbe interactions. Chapman & Hall, New York, pp 187–235

    Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89: 136–150

    CAS  Google Scholar 

  • Tomczyk A (2006) Increasing cucumber resistance to spider mites by biotic plant resistance inducers. Biol Lett (Warsaw) 43:381–387

    Google Scholar 

  • Ton J, Van Pelt JA, Van Loon LC, Pieterse CMJ (2002) Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant Microbe Interact 15:27–34

    Article  PubMed  CAS  Google Scholar 

  • Tripathi L, Tripathi JN, Hughes JA (2005) Agrobacterium-mediated transformation of planta in cultivar Agbagba (Musa spp.) Afr. J Biotechnol 4:1378–1383

    CAS  Google Scholar 

  • Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656

    PubMed  CAS  Google Scholar 

  • Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765

    Article  Google Scholar 

  • Van Loon LC, van Strien EA (1999) The families of pathogenesis‐related proteins, their activities, and comparative analysis of PR‐1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Peer R, Schippers B (1992) Lipopolysaccharides of plant growth-promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to fusarium wilt. Neth J Plant Pathol 98: 129–139

    Article  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 91:728–734

    Article  Google Scholar 

  • Van Wees SCM, Pieterse CMJ, Trijssenaar A, Vant Westende YAM, Hartog F, Van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant Microbe Interact 10:716–724

    Article  PubMed  Google Scholar 

  • Van Wees SCM, Luijendijk M, Smoorenburg I, Van Loon LC, Pieterse CMJ (1999) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol Biol 41:537–549

    Article  PubMed  Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact 17:895–908

    Article  PubMed  CAS  Google Scholar 

  • Vidhyasekaran P, Muthamilan M (1999) Evaluation of powder formulation of Pseudomonas fluorescens Pf1 for control of rice sheath blight. Biocontrol Sci Technol 9:67–74

    Article  Google Scholar 

  • Vidhyasekaran P, Kamala N, Ramanathan A, Rajappan K, Paranidharan V, Velazhahan R (2001) Induction of systemic resistance by Pseudomonas fluorescens Pf1 against Xanthomonas oryzae pv. oryzae in rice leaves. Phytoparasitica 29:155–166

    Article  Google Scholar 

  • Viswanathan R, Samiyappan R (1999) Induction of systemic resistance by plant growth promoting rhizobacteria against red rot disease caused by Collectotrichum falcatum went in sugarcane. Proc Sugar Tech Assoc India 61:24–39

    Google Scholar 

  • Viswanathan R, Samiyappan R (2001) Role of chitinases in Pseudomonas spp. induced systemic resistance against Colletotrichum falcatum in sugarcane. Indian Phytopathol 54:418–423

    CAS  Google Scholar 

  • Vivekananthan R, Ravi M, Ramanathan A, Samiyappan R (2004) Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defense against anthracnose pathogen in mango. World J Microbiol Biotechnol 20:235–244

    Article  CAS  Google Scholar 

  • Wang Y, Ohara Y, Nakayashiki H, Tosa Y, Mayama S (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant Microbe Interact 18:385–396

    Article  PubMed  CAS  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094

    PubMed  CAS  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletrotichum orbiculare by select strains of plant-growth promoting rhizobacteria. Phytopathology 81: 1508–1512

    Article  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86:221–224

    Article  Google Scholar 

  • White RF (1979) Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99:410–412

    Article  PubMed  CAS  Google Scholar 

  • Zehnder G, Kloepper J, Yao C, Wei G (1997) Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth promoting rhizobacteria. J Econ Entomol 90:391–396

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Annapurna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Annapurna, K., Kumar, A., Kumar, L.V., Govindasamy, V., Bose, P., Ramadoss, D. (2013). PGPR-Induced Systemic Resistance (ISR) in Plant Disease Management. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Disease Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33639-3_15

Download citation

Publish with us

Policies and ethics