Skip to main content
Log in

Direct and indirect plant defenses induced by (Z)-3-hexenol in tomato against whitefly attack

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Plants have evolved induced defense mechanisms against insect herbivore attacks. The application of plant elicitors can enhance the biological control of crop pests by inducing plant defense responses, and (Z)-3-hexenol (z3HOL) is recognized as a herbivore-induced plant volatile that plays an important role in the chemical communication between plants and pests. We investigated whether z3HOL can activate the defense mechanism of tomato (Solanum lycopersicum) against the whitefly Bemisia tabaci, one of the major insect pests of cultivated tomato. Exposure to z3HOL vapors in the glass jars decreased weight gain and oviposition in B. tabaci and negatively influenced the feeding behavior of B. tabaci by shortening the total feeding period and phloem ingestion and increasing the frequency of stylet puncture. Furthermore, exposure to z3HOL induced jasmonic acid- and salicylic acid-mediated defense responses and enhanced B. tabaci-induced volatile emissions in tomato. The elevated release of tomato volatiles increased the attraction of the parasitoid Encarsia formosa and improved its parasitism on B. tabaci. Our results indicate that z3HOL can serve as an elicitor that triggers direct and indirect defense responses against B. tabaci by modulating signaling pathways in tomato. These findings will not only help us to gain a better understanding of how z3HOL influences the crop community, but also provide new insights into the potential application of z3HOL in integrated pest management systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal AA (2011) Current trends in the evolutionary ecology of plant defence. Funct Ecol 25:420–432

    Google Scholar 

  • Ament K, Kant MR, Sabelis MW, Haring MA, Schuurink RC (2004) Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol 135:2025–2037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arimura GI, Köpke S, Kunert M, Volpe V, David A, Brand P, Dabrowska P, Maffei ME, Boland W (2008) Effects of feeding Spodoptera littoralis on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emission. Plant Physiol 146:965–973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era. Science 311:812–815

    CAS  PubMed  Google Scholar 

  • Bate NJ, Rothstein SJ (1998) C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J 16:561–569

    CAS  PubMed  Google Scholar 

  • Beckers GJM, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10:425–431

    PubMed  Google Scholar 

  • Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97:9329–9334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouagga S, Urbaneja A, Rambla JL, Flors V, Granell A, Jaques JA, Pérez-Hedo M (2018a) Zoophytophagous mirids provide pest control by inducing direct defences, antixenosis and attraction to parasitoids in sweet pepper plants. Pest Manag Sci 74:1286–1296

    CAS  PubMed  Google Scholar 

  • Bouagga S, Urbaneja A, Rambla JL, Granell A, Pérez-Hedo M (2018b) Orius laevigatus strengthens its role as a biological control agent by inducing plant defenses. J Pest Sci 91:55–64

    Google Scholar 

  • Bruce TJA, Matthes MC, Chamberlain K, Woodcock CM, Mohib A, Webster B, Smart LE, Birkett MA, Pickett JA, Napier JA (2008) cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc Natl Acad Sci USA 105:4553–4558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruinsma M, Posthumus MA, Mumm R, Mueller MJ, Van Loon JJA, Dicke M (2009) Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores. J Exp Bot 60:2575–2589

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19

    PubMed  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the cry for help. Trends Plant Sci 15:167–175

    CAS  PubMed  Google Scholar 

  • Engelberth J, Engelberth M (2019) The costs of green leaf volatile-induced defense priming: temporal diversity in growth responses to mechanical wounding and insect herbivory. Plants 8:23

    CAS  PubMed Central  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engelberth J, Contreras CF, Dalvi C, Li T, Engelberth M (2013) Early transcriptome analyses of Z-3-Hexenol-treated Zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles. PLoS ONE 8:e77465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farag MA, Paré PW (2002) C6-Green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545–554

    CAS  PubMed  Google Scholar 

  • Farag MA, Fokar M, Abd H, Zhang H, Allen RD, Paré PW (2005) (Z)-3-Hexenol induces defense genes and downstream metabolites in maize. Planta 220:900–909

    CAS  PubMed  Google Scholar 

  • Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008) Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol 146:818–824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerling D, Alomar O, Arnò J (2001) Biological control of Bemisia tabaci using predators and parasitoids. Crop Prot 20:779–799

    Google Scholar 

  • Gontijo L, Cascone P, Giorgini M, Michelozzi M, Rodrigues HS, Spiezia G, Lodice L, Guerrieri E (2019) Relative importance of host and plant semiochemicals in the foraging behavior of Trichogramma achaeae, an egg parasitoid of Tuta absoluta. J Pest Sci 92:1479–1488

    Google Scholar 

  • Hare JD (2011) Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu Rev Entomol 56:161–180

    CAS  PubMed  Google Scholar 

  • Hatanaka A (1993) The biogeneration of green odour by green leaves. Phytochemistry 34:1201–1218

    CAS  Google Scholar 

  • Heil M, Karban R (2010) Explaining evolution of plant communication by airborne signals. Trends Ecol Evol 25:137–144

    PubMed  Google Scholar 

  • Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Helms AM, De Moraes CM, Tröger A, Alborn HT, Francke W, Tooker JF, Mescher MC (2017) Identification of an insect-produced olfactory cue that primes plant defenses. Nat Commun 8:337

    PubMed  PubMed Central  Google Scholar 

  • Jiang YX, Lei H, Collar JL, Martin B, Muñiz M, Fereres A (1999) Probing and feeding behavior of two distinct biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on tomato plants. J Econ Entomol 92:357–366

    Google Scholar 

  • Kachroo A, Robin GP (2013) Systemic signaling during plant defense. Curr Opin Plant Biol 16:527–533

    CAS  PubMed  Google Scholar 

  • Kang ZW, Liu FH, Zhang ZF, Tian HG, Liu TX (2018) Volatile β-Ocimene can regulate developmental performance of peach aphid Myzus persicae through activation of defense responses in Chinese cabbage Brassica pekinensis. Front Plant Sci 9:708

    PubMed  PubMed Central  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced Responses to Herbivory. University of Chicago Press, Chicago

    Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    CAS  PubMed  Google Scholar 

  • Kessler A, Halitschke R, Diezel C, Baldwin IT (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292

    PubMed  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2005) Volatile C6-aldehydes and Allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol 46:1093–1102

    CAS  PubMed  Google Scholar 

  • Liu BM, Preisser EL, Chu D, Pan HP, Xie W, Wang SL, Wu QJ, Zhang YJ (2013) Multiple forms of vector manipulation by a plant-infecting virus: Bemisia tabaci and tomato yellow curl leaf virus. J Virol 87:4929–4937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhang YJ, Xie W, Wu QJ, Wang SL (2016) The suitability of biotypes Q and B of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) at different nymphal instars as hosts for Encarsia formosa Gahan (Hymenoptera: Aphelinidae). PeerJ 4:e1863

    PubMed  PubMed Central  Google Scholar 

  • Liu X, Chen G, Zhang YJ, Xie W, Wu QJ, Wang SL (2017) Virus-infected plants altered the host selection of Encarsia formosa, a parasitoid of whiteflies. Front Physiol 8:937

    PubMed  PubMed Central  Google Scholar 

  • Lou Y, Du MH, Turlings TCJ, Cheng J, Shan WF (2005) Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae. J Chem Ecol 31:1985–2002

    CAS  PubMed  Google Scholar 

  • Luo C, Jones CM, Devine G, Zhang F, Denholm I, Gorman K (2010) Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China. Crop Prot 29:429–434

    CAS  Google Scholar 

  • Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280

    CAS  PubMed  Google Scholar 

  • McCormick AC, Unsicker SB, Gershenzon J (2012) The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17:303–310

    Google Scholar 

  • Mithofer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    PubMed  Google Scholar 

  • Ozawa R, Arimura G, Takabayashi J, Shimoda T, Nishioka T (2000) Involvement of jasmonate and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol 41:391–398

    CAS  PubMed  Google Scholar 

  • Pappas ML, Steppuhn A, Geuss D, Topalidou N, Zografou A, Sabelis MW, Broufas GD (2015) Beyond predation: the zoophytophagous predator Macrolophus pygmaeus induces tomato resistance against spider mites. PLoS ONE 10:e0127251

    PubMed  PubMed Central  Google Scholar 

  • Pérez-Hedo M, Bouagga S, Jaques A, Flors V, Urbaneja A (2015a) Tomato plant responses to feeding behavior of three zoophytophagous predators (Hemiptera: Miridae). Biocontrol 86:46–51

    Google Scholar 

  • Pérez-Hedo M, Urbaneja-Bernat P, Jaques JA, Flors V, Urbaneja A (2015b) Defensive plant responses induced by Nesidiocoris tenuis (Hemiptera: Miridae) on tomato plants. J Pest Sci 88:543–554

    Google Scholar 

  • Pérez-Hedo M, Suay R, Alonso M, Ruocco M, Giorgini M, Poncet C, Urbaneja A (2017) Resilience and robustness of IPM in protected horticulture in the face of potential invasive pests. Crop Prot 97:119–127

    Google Scholar 

  • Pérez-Hedo M, Arias-Sanguino ÁM, Urbaneja A (2018a) Induced tomato plant resistance against Tetranychus urticae triggered by the phytophagy of Nesidiocoris tenuis. Front Plant Sci 9:1419

    PubMed  PubMed Central  Google Scholar 

  • Pérez-Hedo M, Rambla JL, Granell A, Urbaneja A (2018b) Biological activity and specificity of Miridae-induced plant volatiles. Biocontrol 63:203–213

    Google Scholar 

  • Scala A, Allmann S, Mirabella R, Haring MA, Schuurink RC (2013) Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. Int J Mol Sci 14:17781–17811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelz EA, Alborn HT, Banchio E, Tumlinson JH (2003) Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory. Planta 216:665–673

    CAS  PubMed  Google Scholar 

  • Schuman MC, Baldwin IT (2016) The layers of plant responses to insect herbivores. Annu Rev Entomol 61:373–394

    CAS  PubMed  Google Scholar 

  • Schweiger R, Heise AM, Persicke M, Muller C (2014) Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types. Plant, Cell Environ 37:1574–1585

    CAS  Google Scholar 

  • Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6:365–371

    CAS  PubMed  Google Scholar 

  • Silva DB, Weldegergis BT, Van Loon JJA, Bueno VH (2017) Qualitative and quantitative differences in herbivore-induced plant volatile blends from tomato plants infested by either Tuta absoluta or Bemisia tabaci. J Chem Ecol 43:53–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sobhy IS, Erb M, Lou YG, Turlings TCJ (2014) The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests. Philos Trans R Soc B 369:1471–2970

    Google Scholar 

  • Sobhy IS, Erb M, Turlings TCJ (2015) Plant strengtheners enhance parasitoid attraction to herbivore-damaged cotton via qualitative and quantitative changes in induced volatiles. Pest Manag Sci 71:686–693

    CAS  PubMed  Google Scholar 

  • Su Q, Mescher MC, Wang SL, Chen G, Xie W, Wu QJ, Wang WK, Zhang YJ (2016) Tomato yellow leaf curl virus differentially influences plant defence responses to a vector and a non-vector herbivore. Plant, Cell Environ 39:597–607

    CAS  Google Scholar 

  • Su Q, Chen G, Mescher MC, Peng ZK, Xie W, Wang SL, Wu QJ, Liu J, Li CR, Wang WK, Zhang YJ (2018) Whitefly aggregation on tomato is mediated by feeding-induced changes in plant metabolites that influence the behavior and performance of conspecifics. Funct Ecol 32:1180–1193

    Google Scholar 

  • Su Q, Peng ZK, Tong H, Xie W, Wang SL, Wu QJ, Zhang YJ (2019) A salivary ferritin in the whitefly suppresses plant defenses and facilitates host exploitation. J Exp Bot 70:3343–3355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian DL, Peiffer M, De Moraes CM, Felton GW (2014) Roles of ethylene and jasmonic acid in systemic induced defense in tomato (Solanum lycopersicum) against Helicoverpa zea. Planta 239:577–589

    CAS  PubMed  Google Scholar 

  • Tonğa A, Çakmak S, Şeker K, Temiz MG, Bayram A (2020) cis-Jasmone treatments affect multiple sucking insect pests and associated predators in cotton. Entomol Gen 40:49–61

    Google Scholar 

  • Turlings TCJ, Erb M (2018) Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu Rev Entomol 63:433–452

    CAS  PubMed  Google Scholar 

  • Van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. Biocontrol 63:39–59

    Google Scholar 

  • Van Poecke RMP, Dicke M (2002) Induced parasitoid attraction by Arabidopsis thaliana: involvement of the octadecanoid and the salicylic acid pathway. J Exp Bot 53:1793–1799

    PubMed  Google Scholar 

  • Wei JN, Kang L (2011) Roles of (Z)-3-hexenol in plant-insect interactions. Plant Signal Behav 6:369–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JQ, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    CAS  PubMed  Google Scholar 

  • Wu JQ, Hettenhausen C, Meldau S, Baldwin IT (2007) Herbivory rapidly activates MAPK signalling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19:1096–1122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xin ZJ, Yu ZN, Erb M, Turlings TCJ, Wang BH, Qi JF, Liu SN, Lou YG (2012) The broad-leaf herbicide 2,4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp. New Phytol 194:498–510

    CAS  PubMed  Google Scholar 

  • Xin ZJ, Li XW, Li JC, Chen ZM, Sun XL (2016) Application of chemical elicitor (Z)-3-hexenol enhances direct and indirect plant defenses against tea geometrid Ectropis oblique. Biocontrol 61:1–12

    CAS  Google Scholar 

  • Yao QX, Peng ZK, Tong H, Yang FB, Xing GS, Wang LJ, Zheng JJ, Zhang YJ, Su Q (2019) Tomato plant flavonoids increase whitefly resistance and reduce spread of Tomato yellow leaf curl virus. J Econ Entomol 112:2790–2796

    PubMed  Google Scholar 

  • Zhang PJ, Xu CX, Zhang JM, Lu YB, Wei JN, Liu YQ, David A, Boland W, Turlings TCJ (2013) Phloem-feeding whiteflies can fool their host plants, but not their parasitoids. Funct Ecol 27:1304–1312

    Google Scholar 

  • Zhang NX, Messelink GJ, Alba JM, Schuurink RC, Kant MR, Janssen A (2018) Phytophagy of omnivorous predator Macrolophus pygmaeus affects performance of herbivores through induced plant defences. Oecologia 186:101–113

    PubMed  Google Scholar 

  • Zhang NX, van Wieringen D, Messelink GJ, Janssen A (2019) Herbivores avoids host plants previously exposed to their omnivorous predator Macrolophus pygmaeus. J Pest Sci 92:737–745

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31872930), the National Key Research and Development Plan (2017YFD0200400), the Science and Technology Innovation Program of the Chinese Academy of Agricultural Science (CAAS-ASTIP-IVFCAAS), and the Beijing Key Laboratory for Pest Control and Sustainable Cultivation of Vegetables.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Su or Youjun Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Communicated by A. Biondi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Zhang, Q., Yao, Q. et al. Direct and indirect plant defenses induced by (Z)-3-hexenol in tomato against whitefly attack. J Pest Sci 93, 1243–1254 (2020). https://doi.org/10.1007/s10340-020-01234-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-020-01234-6

Keywords

Navigation