Skip to main content
Log in

Applications and mechanisms of free and immobilized laccase in detoxification of phenolic compounds — A review

  • Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Phenolic compounds are present in different concentrations in the effluent from numerous industrial and agricultural activities. These compounds are harmful to living organisms due to their high toxicity, hence indicating a serious environmental concern. Although conventional methods such as chemical, physical, and physicochemical procedures have been widely used for treating phenol-contaminated wastewaters, they are not useful owing to some short-comings. Compared to conventional procedures, much attention has been recently devoted to enzymatic methods because of high catalytic efficiency, mild operating conditions and environmentally friendly feature. Among various enzymes, laccases have demonstrated a superior potential for removing phenolic contaminants. Thus, this review summarizes the up-to-date literature on the use of free and immobilized laccases from different microbial source in the degradation and remediation of phenolic pollutants in batch processes and continuous reactors. In general, examples through the review approve that free laccases as well as immobilized laccases onto inorganic, organic (natural or synthetic) and hybrid supports show excellent performance in the remediation of phenolic compounds from wastewater. In contrast to immobilized laccases, free laccases suffer from high prices, low operative stability, and inability to recover and reuse in their native forms. Moreover, the possible mechanisms associated with oxidation of phenolic compounds by the laccase-catalyzed systems are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Hollmann and I. W. C. E. Arenda, Polymer, 4, 759 (2012).

    Article  Google Scholar 

  2. G. Annadurai, S. R. Babu, K. P. O. Mahesh and T. Murugesan, Bioprocess Eng., 22, 493 (2000).

    Article  CAS  Google Scholar 

  3. R. N. Bharagava and R. Chandra, Biodegradation J., 21, 703 (2010).

    Article  CAS  Google Scholar 

  4. L. Gianfreda, G. Iamarino, R. Scelza and M. A. Rao, Biocatal. Biotransformation, 24, 177 (2006).

    Article  CAS  Google Scholar 

  5. G. Saxena and R. N. Bharagava, Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches, In: R. N. Bharagava (Ed.) Environmental pollutants and their bioremediation approaches. CRC Press, Taylor & Francis Group (2017).

  6. G. Poi, A. Aburto-Medina, P. C. Mok, A. S. Ball and E. Shahsavari, Water Air Soil Pollut., 228, 89 (2017).

    Article  Google Scholar 

  7. N. Singh and C. J. Balomajumder, Water Process Eng., 9, 233 (2016).

    Article  Google Scholar 

  8. Q. Husain, Crit. Rev. Biotechnol., 26, 201 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. N. Güy, K. Atacan, İ. Yıldirim and M. Özacar, J. Mol. Liq., 326, 115311 (2021).

    Article  Google Scholar 

  10. K. Atacan, N. Güy and M. Özacar, Colloids Interface Sci. Commun., 40, 100359 (2021).

    Article  CAS  Google Scholar 

  11. H. Gai, H. Wang, L. Liu, B. Feng, M. Xiao, Y. Tang, X. Qu, H. Song and T. Huang, Chem. Phys. Lett., 767, 138367 (2021).

    Article  CAS  Google Scholar 

  12. J. Zhang, M. Xie, H. ZhaoLing, Z. Guangfeng and W. Zhao, Chemosphere, 269, 29404 (2021).

    Google Scholar 

  13. S. Kumar, R. D. Kaushik and L. P. Purohit, J. Mol. Liq., 327, 114814 (2021).

    Article  CAS  Google Scholar 

  14. L. Y. Jun, L. S. Yon, N. M. Mubaraka, C. H. Bing, S. Pan, M. K. Danquah, E. C. Abdullah and M. Khalid, J. Environ. Chem. Eng., 7, 102961 (2019).

    Article  CAS  Google Scholar 

  15. N. Güy, K. Atacan, B. Boutra and M. Özacar, Water Sci Technol., 82, 1912 (2020).

    Article  PubMed  Google Scholar 

  16. K. Sellami, N. Nasrallah, R. Maachi, N. Tandjaoui, M. Abouseoud and A. Amrane, J. Hazard. Mater., 403, 124021 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. K. A. M. Said, A. FauziIsmail, Z. Abdul Karim, M. Sohaimi Abdullah and A. Hafeez, Process Saf. Environ. Prot., 151, 257 (2021).

    Article  Google Scholar 

  18. S. Deng, L. Jothinathan, Q. Cai, RuiLi, M. Wu, S. Leong-Ong and J. Hu, Water Res., 190, 116687 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. H. Tian, X. Xu, J. Qu, H. Li, Y. Hu, L. Huang, W. He and B. Li, J. Hazard. Mater., 392, 122463 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. M. Alshabib and S. A. Onaizi, Sep. Purif. Technol., 219, 186 (2019).

    Article  CAS  Google Scholar 

  21. H. Rahmani, A. Lakzian, A. Karimi and A. Halajnia, J. Environ. Manage., 256, 109740 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. P. Chowdhary, G. Saxena and R. N. Bharagava, Role of laccase enzyme in bioremediation of industrial wastes and its biotechnological application, In: Bharagava R. N, Saxena G (Eds.) Bioremediation of industrial pollutants 1st edn. Write & Print Publications, New Delhi (2016).

    Google Scholar 

  23. Q. Husain, M. Husain and Y. Kulshrestha, Crit. Rev. Biotechnol., 29, 94 (2009).

    Article  Google Scholar 

  24. M. D. Pravin, F. S. Chris and A. Gnanamani, RSC Adv., 8, 38416 (2018).

    Article  CAS  Google Scholar 

  25. Q. Wu, Z. Xu, Y. Duan, Y. Zhu, M. Ou and X. Xu, RSC Adv., 7, 28114 (2017).

    Article  CAS  Google Scholar 

  26. C.-L. Yao, C.-C. Lin, I.-M. Chu and Y.-T. Lai, Appl. Biochem. Biotechnol., 191, 45 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. H. Xu, M.-Y. Guo, Y.-H. Gao, X.-H. Bai and X.-W. Zhou, BMC Biotechnol., 17, 19 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. G. Ward, Y. Hadar and G. C. Dosoretz, J. Chem. Technol. Biotechnol., 78, 1239 (2003).

    Article  CAS  Google Scholar 

  29. S. Ba and V. V. Kumar, Crit. Rev. Biotechnol., 37, 819 (2017).

    Article  PubMed  Google Scholar 

  30. M. Bilal, T. Rasheed, F. Nabeel, H. M. N. Iqbal and Y. Zhao, J. Environ. Manage., 234, 253 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. M. Bilal, H. M. N. Iqbal and D. Barceló, Sci. Total Environ., 689, 160 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Y. Y. Liu, Z. T. Zeng, G. M. Zeng, L. Tang, Y. Pang, Z. Li, C. Liu, X. Lei, M. S. Wu, P. Y. Ren, Z. F. Liu, M. Chen and G. X. Xie, Bioresour. Technol., 115, 21 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. S. Z. Mohammadi, Z. Darijani and M. A. Karimi, J. Alloys Compd., 832, 154942 (2020).

    Article  CAS  Google Scholar 

  34. H. Chakroun, T. Mechichi, M. J. Martinez, A. Dhouib and S. Sayadi, Process Biochem., 45, 507 (2010).

    Article  CAS  Google Scholar 

  35. H. Yoshida, J. Chem. Soc. (Japan), 43, 472 (1883).

    Article  CAS  Google Scholar 

  36. M. Mogharabi and M. A. Faramarzi, Adv. Synth. Catal., 56, 897 (2014).

    Article  Google Scholar 

  37. H. T. Abdel-Mohsen, J. Conrad and U. Beifuss, Green Chem., 16, 90 (2014).

    Article  CAS  Google Scholar 

  38. C. Asta, J. Conrad, S. Mika and U. Beifuss, Green Chem., 13, 3066 (2011).

    Article  CAS  Google Scholar 

  39. S. Saadati, N. Ghorashi, A. Rostami and F. Kobarfard, Eur. J. Org. Chem., 4050 (2018).

  40. A. Rostami, B. Mohammadi, Z. Shokri and S. Saadati, Catal. Commun., 111, 59 (2018).

    Article  CAS  Google Scholar 

  41. D. Khaledian, A. Rostami and S. A. Zarei, Catal. Commun., 114, 75 (2018).

    Article  CAS  Google Scholar 

  42. M. Shariati, A. Rostami, G. Imanzadeh and S. Kheirjou, Mol. Catal., 461, 48 (2018).

    Article  CAS  Google Scholar 

  43. N. Ghorashi, Z. Shokri, R. Moradi, A. Abdelrasoul and A. Rostami, RSC Adv., 10, 14254 (2020).

    Article  CAS  Google Scholar 

  44. S. Moradi, Z. Shokri, N. Ghorashi, A. Navaee and A. Rostami, J. Catal., 382, 305 (2020).

    Article  CAS  Google Scholar 

  45. S. Witayakran and A. J. Ragauskas, Adv. Synth. Catal., 351, 1187 (2009).

    Article  CAS  Google Scholar 

  46. J. Su, J. Fu, Q. Wang, C. Silva and A. Cavaco-Paulo, Crit Rev. Biotechnol., 38, 294 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. H. Catherine, D. Frédéric and M. Penninckx, Environ. Technol. Innov., 5, 250 (2016).

    Article  Google Scholar 

  48. A. Marjasvaara, M. Torvinen, H. Kinnunen and P. Vainiotalo, Biomacromolecules, 7, 1604 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. A. J. Tušek, M. Tišma V. Bregovi, A. Pticar, Ž. Kurtanjek and B. Zelić, Biotechnol. Bioprocess Eng., 18, 686 (2013).

    Article  Google Scholar 

  50. X. Sun, R. Bai, Y. Zhang, Q. Wang, X. Fan, J. Yuan, L. Cui and P. Wang, Appl. Biochem. Biotechnol., 171, 1673 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Z. Asadgol, H. Forootanfar, S. Rezaei, A. H. Mahvi and M. A. Faramarzi, J. Environ. Health Sci., 12, 93 (2014).

    Google Scholar 

  52. A. Llevot, E. Grau, S. Carlotti, S. Grelier and H. Cramail, J. Mol. Catal. B Enzym., 125, 34 (2016).

    Article  CAS  Google Scholar 

  53. F. Bettin, F. Cousseau, K. Martins, N. A. Boff, S. Zaccaria, M. M. D. Silveira and A. J. P. Dillon, J. Environ. Manage., 236, 581 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. M. Carolina, P. Gonçalves, T. Guenter, R. Firmani, J. Tomiê, S. Andres, V. Morales and J. Paulo, Process Biochem., 76, 95 (2019).

    Article  Google Scholar 

  55. I. Eş, J. D. Gonçalves-Vieira and A. C. Amaral, Appl. Microbiol. Biotechnol., 99, 2065 (2015).

    Article  PubMed  Google Scholar 

  56. M. Hartmann and X. Kostrov, Chem. Soc. Rev., 42, 6277 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. N. R. Mohamad, N. H. Che-Marzuki, N. A. Buang and F. Huyop, Biotechnol. Biotechnol. Equip., 29, 205 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. R. DiCosimo, J. McAuliffe, A. J. Poulose and G. Bohlmann, Chem. Soc. Rev., 42, 6437 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. M. Mohammadi, M. A. Ashabi, P. Salehi, M. Yousefi, M. Nazari and J. Brask, Int. J. Biol. Macromol., 109, 443 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. K. Atacan, N. Güy, S. Cakar and M. Özacar, J. Photochem. Photobiol. A: Chem., 382, 11935 (2019).

    Article  Google Scholar 

  61. K. Atacan, B. Çakiroǧlu and M. Özacar, Colloids Surf. B: Biointerfaces, 156, 9 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. K. Atacan, B. Çakiroǧlu and M. Özacar, Int. J. Biol. Macromol., 97, 148 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. K. Atacan and M. Özacar, Colloids Surf. B: Biointerfaces, 128, 227 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. R. A. Sheldon, Adv. Synth. Catal., 349, 1289 (2007).

    Article  CAS  Google Scholar 

  65. J. Zdarta, A. S. Meyer and M. Pinelo, Adv. Colloid Interface Sci., 258, 1 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. A. Salis, M. Pisano, M. Monduzzi, V. Solinas and E. Sanjust, J. Mol. Catal. B Enzym., 58, 175 (2009).

    Article  CAS  Google Scholar 

  67. P. Galliker, G. Hommes, D. Schlosser, P. F. X. Corvini and P. Shahgaldian, J. Colloid Interf. Sci., 349, 98 (2010).

    Article  CAS  Google Scholar 

  68. J. Hu, B. Yuan, Y. Zhang and M. Guo, RSC Adv., 5, 99439 (2015).

    Article  CAS  Google Scholar 

  69. M. T. Moreira, Y. Moldes-Diz, S. Feijoo, G. Eibes, J. M. Lema and G. Feijoo, Appl. Sci., 7, 851 (2017).

    Article  Google Scholar 

  70. Z. Fathali, S. Rezaei, M. A. Faramarzi and M. Habibi-Rezaei, Int. J. Biol. Macromol., 122, 359 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. T. Aydemir and S. Güler, Artif. Cells Nanomed. Biotechnol., 43, 425 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. E. Alver and A. Metin, Biodegradation, 125, 235 (2017).

    Article  CAS  Google Scholar 

  73. R. Tarasi, M. Alipour, L. Gorgannezhad, S. Imanparast, A. Yousefi-Ahmadipour, A. Ramezani, M. R. Ganjali, A. Shafiee, M. A. Faramarzi and M. Khoobi, Macromol. Res., 26, 755 (2018).

    Article  CAS  Google Scholar 

  74. G. Bayramoǧlu and M. Y. Arıca, Mater. Sci. Eng. C, 29, 1990 (2009).

    Article  Google Scholar 

  75. M. D. Stanescu, S. Gavrilas, R. Ludwig, D. Haltrich and V. I. Lozinsky, Eur. Food Res. Technol., 234, 655 (2012).

    Article  CAS  Google Scholar 

  76. T. Doǧan, E. Bayram, L. Uzun, S. Çenel and A. Denizli, J. Appl. Polym. Sci., 132, 41981 (2015).

    Article  Google Scholar 

  77. X. Qiu, Y. Wang, Y. Xue, W. Li and Y. Hu, Chem. Eng. J., 391, 123564 (2020).

    Article  CAS  Google Scholar 

  78. E. Wu, Y. Li, Q. Huang, Z. Yang, A. Wei and, Q. Hu, Chemosphere, 233, 327 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. R. Pang, M. Li and C. Zhang, Talanta, 131, 38 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) discovery grants program for funding the research and the Chemical and Biological Engineering Department at the University of Saskatchewan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira Abdelrasoul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, A., Abdelrasoul, A., Shokri, Z. et al. Applications and mechanisms of free and immobilized laccase in detoxification of phenolic compounds — A review. Korean J. Chem. Eng. 39, 821–832 (2022). https://doi.org/10.1007/s11814-021-0984-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0984-0

Keywords

Navigation