Skip to main content
Log in

Optimization of lead removal from aqueous solution by micellar-enhanced ultrafiltration process using Box-Behnken design

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The main objective of this research was to use Box-Behnken experimental design (BBD) and response surface methodology (RSM) for optimization of micellar-enhanced ultrafiltration (MEUF) to remove lead ions from synthetic wastewater using spiral-wound ultrafiltration membrane. The critical factors selected for the examination were surfactant concentration, molar ratio of surfactant to metal (S/M) and solution pH. A total of 17 experiments were accomplished towards the construction of a quadratic model for both target variables. The experimental results were fitted with a second-order polynomial equation by a multiple regression analysis, and more than 95%, 93% of the variation could be predicted by the models for lead rejection and permeation flux, respectively. The optimum condition was found by using the obtained mathematical models. Optimization indicated that in C SDS =2mM, pH=6.57 and S/M= 9.82 maximum flux and rejection efficiency can be achieved, simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. R. Spellman, Handbook of water and wastewater treatment plant operations, Lewis Publishers Technology & Engineering (2003).

  2. Patterson, William, J. Industrial wastewater treatment technology, Butterworth (1985).

  3. M. Sánchez, Causes and effects of heavy metal pollution, Nova Science Publishers Inc. New York (2008).

    Google Scholar 

  4. H. T. Odum, Heavy metals in the environment, Lewis Publishers, Science (2000).

  5. T. A. Kurniawan, G.Y. S. Chan, W.H. Loa and S. Babel, Chem. Eng. J., 118, 83 (2006).

    Article  CAS  Google Scholar 

  6. T. Bahadir, G. Bakan, L. Altas and H. Buyukgungor, Enzym. Microb. Technol., 41, 98 (2007).

    Article  CAS  Google Scholar 

  7. L. Hajiaghababaei, A. Badiei, M. R. Ganjali, S. Heydari, Y. Khaniani and Gh. Mohammadi Ziarani, Desalination, 266, 182 (2011).

    Article  CAS  Google Scholar 

  8. M. Cheryan, Ultrafiltration and Microfiltration Handbook, University of Illinois, Urbana, Illinois (1998).

    Google Scholar 

  9. Ch.W. Li, Y.M. Liang and Y.M. Chen, Sep. Purif. Technol., 45, 213 (2005).

    Article  CAS  Google Scholar 

  10. R. Sabry, A. Hafez and M. Khedr, Desalination, 212, 165 (2007).

    Article  CAS  Google Scholar 

  11. P. Yenphan, A. Chanachai and R. Jiraratananon, Desalination, 253, 30 (2010).

    Article  CAS  Google Scholar 

  12. G. Son and S. Lee, Korean J. Chem. Eng., 28, 793 (2011).

    Article  CAS  Google Scholar 

  13. B. Rahmanian, M. Pakizeha and A. Maskooki, J. Hazard. Mater., 184, 261 (2010).

    Article  CAS  Google Scholar 

  14. B. Rahmanian, M. Pakizeh, S. A.A. Mansoori and R. Abedini, J. Hazard. Mater., 187, 67 (2011).

    Article  CAS  Google Scholar 

  15. B. Rahmanian, M. Pakizeh, M. Esfandyari, F. Heshmatnezhada and A. Maskooki, J. Hazard. Mater., 192, 585 (2011).

    Article  CAS  Google Scholar 

  16. A. Bodalo-Santoyo, J. L. Gomez-Carrasco, E. Gomez-Gomez, M. F. Maximo-Martin and A.M. Hidalgo-Montesinos, Desalination, 160, 151 (2004).

    Article  CAS  Google Scholar 

  17. B. Rahmanian, M. Pakizeh, M. Esfandyari and A. Maskooki, Sep. Sci. Technol., 46, 1571 (2011).

    Article  CAS  Google Scholar 

  18. D. C. Montgomery, Design and analysis of experiments, 7th Ed. (2009).

  19. D. J. Wheeler, Understanding industrial experimentation, 2nd Ed. (2006).

  20. F. Ferella, M. Prisciandaro, I. D. Michelis and F. Veglio, Desalination, 207, 125 (2007).

    Article  CAS  Google Scholar 

  21. S. Bouranene, P. Fievet, A. Szymczyk, M. El-Hadi Samar and A. Vidonne, J. Membr. Sci., 325, 150 (2008).

    Article  CAS  Google Scholar 

  22. P. Canizares, A. Perez, R. Camarillo and R. Mazarro, J. Membr. Sci., 320, 520 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Pakizeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahmanian, B., Pakizeh, M. & Maskooki, A. Optimization of lead removal from aqueous solution by micellar-enhanced ultrafiltration process using Box-Behnken design. Korean J. Chem. Eng. 29, 804–811 (2012). https://doi.org/10.1007/s11814-011-0240-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0240-0

Key words

Navigation