Skip to main content
Log in

Application of micellar enhanced ultrafiltration and activated carbon fiber hybrid processes for lead removal from an aqueous solution

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Micellar enhanced ultrafiltration (MEUF) and activated carbon fiber (ACF) hybrid processes were used to investigate the removal condition of lead ions and surfactant sodium dodecyl sulfate (SDS) from an aqueous solution. Lead removal efficiency increased with the increase of initial surfactant concentration. Molar ratio of lead to SDS up to 1: 5 has shown over 90% removal efficiency of lead, and the optimum molar ratio of lead to SDS was found to be 1: 5. Lead removal efficiency increased with the increase of pH, while it was maintained below 30% without surfactant. Lead removal was mainly due to the adsorption mechanism and no secondary layer was formed to reduce the flux. Lower molecular weight cut-off (MWCO) membrane has shown higher removal efficiency than higher MWCO one. Permeate flux decreased with the increase of molar ratio of lead to SDS. Flux decline was mainly due to the accumulation of micelles on the membrane surface. The presence of copper as a co-existing heavy metal highly affected the lead removal while nickel did not. Two sets of ACF unit in series were able to remove SDS surfactant effectively from the effluents of MEUF process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Lawniczak, P. Lecomte and J. J. Ehrhardt, Environ. Sci. Technol., 35, 1350 (2001).

    Article  Google Scholar 

  2. K. Baek and J.W. Yang., J. Hazard. Mater., B(108), 119 (2004).

    Article  Google Scholar 

  3. R. Bade and S. H. Lee, Environ. Eng. Res., 13(2), 98 (2008).

    Article  Google Scholar 

  4. R. A. Goyer and I. J. Chisolon, Academic Press, New York/London (1972).

  5. S. H. Lee and J. H. Jang, Environ. Eng. Res., 18(2), 130 (2004).

    Google Scholar 

  6. S. N. Bhat, G. A. Smith and E. E. Tucker, Ind. Eng. Chem. Res., 26, 1271 (1987).

    Article  Google Scholar 

  7. L. Shu, S.H. Lee and V. Jegatheesan, Environ. Eng. Res., 17(2), 75 (2002).

    Google Scholar 

  8. V. Jegatheesan, S. H. Lee, C. Visvanathan, L. Shu and M. Marzella, Environ. Eng. Res., 4(4), 283 (1999).

    Google Scholar 

  9. S. Ahmadi, Y. C. Huang and B. J. Betchelor, Environ. Eng., 121, 645 (1995).

    Article  CAS  Google Scholar 

  10. S. R. Jadhav, N. Verma, A. Sharma and P. K. Bhattacharya, Sep. Purif. Technol., 24, 541 (2001).

    Article  CAS  Google Scholar 

  11. D. Chandan, S. D. Gupta and D. Sirshendu, Physicochemical and Engineering Aspects, 318, 125 (2007).

    Google Scholar 

  12. J. F. Scamehorn and J. H. Harwell, Marcel-Dekker Inc., New York (1989).

  13. C. K. Liu, C.W. Li and C.Y. Lin, Chemosphere, 57, 629 (2004).

    Article  CAS  Google Scholar 

  14. S. D. Christian, J. F. Scamehorn and R. T. Ellington, Marcel Dekker, New York (1989).

  15. S. H. Lee, S. Vigneswaran and K. H. Ahn, Environ. Eng. Res., 13(4), 353 (1997).

    Google Scholar 

  16. J. Bahdziewicz, M. Bodzek and E. Wasik, Desalination, 121, 139 (1999).

    Article  Google Scholar 

  17. M. K. Purkait, S. D. Gupta and S. De, J. Colloid Interf. Sci., 207, 259 (2004).

    Google Scholar 

  18. R. Bade and S. H. Lee, Korean J. Chem. Eng., 24(2), 239 (2007).

    Article  CAS  Google Scholar 

  19. X. Chai, G. Chen, P. L. Yue and Y. Mi, J. Member. Sci., 123, 235 (1997).

    Article  CAS  Google Scholar 

  20. K. Beak, B.K. Kim, H. J. Cho and J.W. Yang, J. Hazard. Mater., 99(3), 303 (2003).

    Article  Google Scholar 

  21. J.W. Yang, K. Beak, K. B. Kim and H. J. Cho, International Water Association, Delhi, 1155 (2003).

  22. L. Gzara and M. Dhahbi, Desalination, 137, 241 (2001).

    Article  CAS  Google Scholar 

  23. G. Ghosh and P. K. Bhattacharya, Chem. Eng. J., 119, 45 (2006).

    Article  CAS  Google Scholar 

  24. C. Brasquet, E. Subrenat and P. Le cloirec, Water Sci. Technol., 39(10–11), 201 (1999).

    CAS  Google Scholar 

  25. R. Bade, S. H. Lee, S. S. Jo, H. S. Lee and S. E. Lee, Desalination, 229, 264 (2008).

    Article  CAS  Google Scholar 

  26. C. Jarusutthirak and G. Amy, Water Sci. Technol., 43(10), 225 (2001).

    CAS  Google Scholar 

  27. APHA, Americal Public Health Association, Washington D.C. (1998).

  28. H. J. Kim, K. T. Beak, J. Lee, I. J. Iqbal and J.W. Yang, Desalination, 191, 186 (2006).

    Article  CAS  Google Scholar 

  29. P. Gagliardo, S. Adham and R. Trusell, Water Sci. Technol., 43, 139 (2001).

    Google Scholar 

  30. H. Shin and S. Kang, Water Sci. Technol., 47, 139 (2002).

    Google Scholar 

  31. J. S. Yang, K. Baek and J.W. Yang, Desalination, 185(1–3), 385 (2005).

    Article  Google Scholar 

  32. K. M. Lipe, D. A. Sabatini, M. A. Hasegawa and J. H. Harwell, Ground Water Monit. Rem., 16(1), 85 (1996).

    Article  CAS  Google Scholar 

  33. J. F. Scamehorn and J. H. Harwell, Marcel Dekker, New York (1998).

  34. B. R. Fillipi, J. F. Scamehorn, R.W. Taylor and S.D. Christian, Sep. Sci. Technol., 32, 2401 (1997).

    Article  CAS  Google Scholar 

  35. UCLA, Magnetostrictive Materials Background, Active Materials Lab., Geoffrey P.McKnight (1994).

    Google Scholar 

  36. C. C. Tung, Y. M. Yang, C. H. Chang and J. R. Maa, Waste Manage., 22(7), 695 (2002).

    Article  CAS  Google Scholar 

  37. B. R. Fillipi, L.W. Brant, J. F. Scamehorn and S. D. Christian, J. Colloid Interf. Sci., 213, 68 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seunghwan Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, G., Lee, S. Application of micellar enhanced ultrafiltration and activated carbon fiber hybrid processes for lead removal from an aqueous solution. Korean J. Chem. Eng. 28, 793–799 (2011). https://doi.org/10.1007/s11814-010-0427-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0427-9

Key words

Navigation