Skip to main content
Log in

Covalent crowding strategy for trypsin confined in accessible mesopores with enhanced catalytic property and stability

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Chemically modified macromolecules were assembled with adsorptive trypsin in mesoporous silica foams (MCFs) to establish covalent linkage. Effects of catalytic properties and stability of immobilized trypsin were examined. The addition of chemically modified protein (BSA) and polysaccharide (ficoll) to the immobilized trypsin exhibited high coupled yield (above 90%) and relative activities (174.5% and 175.9%, respectively), showing no protein leaching after incubating for 10 h in buffers. They showed broader pH and temperature profiles, while the half life of thermal stability of BSA-modified preparation at 50 °C increased to 1.3 and 2.3 times of unmodified and free trypsin, respectively. The modified trypsin in aqueous-organic solvents exhibited 100% activity after 6 h at 50 °C. The kinetic parameters of trypsin preparations and suitable pore diameter of MCFs warranted compatibility of covalent modification for substrate transmission. The covalent crowding modification for immobilized trypsin in nanopores establishes suitable and accessible microenvironment and renders possibility of biological application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Brady and J. Jordan, Biotechnol. Lett., 31, 1639 (2009).

    Article  CAS  Google Scholar 

  2. R. A. Sheldon, Adv. Synth. Catal., 349(8–9), 1289 (2007).

    Article  CAS  Google Scholar 

  3. S.-K. Lee, S.-W. Park, Y.-I. Kim, K.-H. Chung, S.-I. Hong and S.-W. Kim, Korean J. Chem. Eng., 19, 261 (2002).

    Article  CAS  Google Scholar 

  4. Y. J. Wang and F. Caruso, Chem. Mater., 17, 953 (2005).

    Article  CAS  Google Scholar 

  5. C. Mateo, J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, and R. Fernandez-Lafuente, Enzyme Microb. Technol., 40, 1451 (2007).

    Article  CAS  Google Scholar 

  6. A. M. Wang, C. Zhou, Z. Q. Du, M. Q. Liu, S. M. Zhu and S. B. Shen, J. Biosci. Bioeng., 107, 219 (2009).

    Article  CAS  Google Scholar 

  7. T. Liu, S. Wang and G. Chen, Talanta, 77, 1767 (2009).

    Article  CAS  Google Scholar 

  8. M. Jiang and Z. H. Guo, J. Am. Chem. Soc., 129, 730 (2007).

    Article  CAS  Google Scholar 

  9. R. J. Ellis, Curr. Opin. Struc. Biol., 11, 114 (2001).

    Article  CAS  Google Scholar 

  10. S. Zorrilla, G. Rivas, A. U. Acuna and M. P. Lillo, Protein Sci., 13, 2960 (2004).

    Article  CAS  Google Scholar 

  11. B.C. Pessela, C. Mateo, M. Filho, A.V. Carrascosa, R. Fernandez-Lafuente and J. M. Guisan, Process Biochem., 43, 193 (2008).

    Article  CAS  Google Scholar 

  12. C. Mateo, J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan and R. Fernandez-Lafuente, Enzyme Microb. Technol., 40, 1451 (2007).

    Article  CAS  Google Scholar 

  13. P. Schmid-winkel, W.W. Lukens, D. Y. Zhao, P. D. Yang, B. F. Chmelka and G. D. Stucky, J. Am. Chem. Soc., 121, 254 (1999).

    Article  Google Scholar 

  14. M. M. Bradford, Anal. Biochem., 72, 248 (1987).

    Article  Google Scholar 

  15. G.V. Lyubinskii, E. A. Kalinichenko and V. A. Tertykh, Theor. Exp. Chem., 28, 216 (1993).

    Article  Google Scholar 

  16. F. Lopez-Gallego, L. Betancor, C. Mateo, A. Hidalgo, N. Alonso-Morales, G. Dellamora-Ortiz, J. M. Guisan and R. Fernandez-Lafuente, J. Biotechnol., 119, 70 (2005).

    Article  CAS  Google Scholar 

  17. C. Mateo, J. M. Palomo, M. Fuentes, L. Betancor, V. Grazu, F. Lopez-Gallego, B. C. C. Pessela, A. Hidalgo, G. Fernandez-Lorente, R. Fernandez-Lafuente and J. M. Guisan, Enzyme Microb. Technol., 39, 274 (2006).

    Article  CAS  Google Scholar 

  18. A. R. Kinjo and S. Takada, Phys. Rev., 66, 031911 (2002).

    Google Scholar 

  19. C. Zhou, A. M. Wang, Z. Q. Du, S. M. Zhu and S. B. Shen, Korean J. Chem. Eng., 26, 1065 (2009).

    Article  CAS  Google Scholar 

  20. R. J. Ellis, Curr. Opin. Struc. Biol., 11, 114 (2001).

    Article  CAS  Google Scholar 

  21. C. M. Soares, H. F. De Castro, M. H. Santana and G.M. Zanin, Appl. Biochem. Biotechnol., 91–93, 703 (2001).

    Article  Google Scholar 

  22. M. S. Cheung and D. Thirumalai, J. Mol. Biol., 357, 632 (2006).

    Article  CAS  Google Scholar 

  23. A. P. Minton, Curr. Opin. Struc. Biol., 10, 34 (2000).

    Article  CAS  Google Scholar 

  24. Z. D. Zhang, Z. M. He and M. X. He, J. Mol. Catal. B-Enzym., 14, 85 (2001).

    Article  CAS  Google Scholar 

  25. B. B. Boonyaratanakornkit, C. B. Park and D. S. Clark, Biochem. Biophys. Acta, 1595, 235 (2002).

    Article  CAS  Google Scholar 

  26. W.G. Wang, P. H. Li, S. B. Shen, H. J. Ying and P. K. Ouyang, Chinese J. Org. Chem., 26, 826 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubao Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, C., Jiang, B., Sheng, Z. et al. Covalent crowding strategy for trypsin confined in accessible mesopores with enhanced catalytic property and stability. Korean J. Chem. Eng. 28, 853–859 (2011). https://doi.org/10.1007/s11814-010-0412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0412-3

Key words

Navigation