Skip to main content
Log in

Porous structure and trypsin capacity of an activated silica matrix

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Abstract

A method is proposed for determining the sizes of the pores that make the main contribution to the protein capacity. This involves constructing curves in \({\Gamma \mathord{\left/ {\vphantom {\Gamma {S_{R^\rho } }}} \right. \kern-\nulldelimiterspace} {S_{R^\rho } }}\),R coordinates for several matrices in which the biopolymer is uniformly distributed over the volume and the surfaces are of the same chemical type but the materials differ in porous characteristics, in which Г is the Henry protein immobilization coefficient, sr the specific surface determined by mercury porometry as governed by the walls of pores whose radii exceed R, and ρ is the apparent density of the corresponding matrix. The value of R for which \({\Gamma \mathord{\left/ {\vphantom {\Gamma {S_{R^\rho } }}} \right. \kern-\nulldelimiterspace} {S_{R^\rho } }}\) are the most similar for several of the carriers is the minimum size of the pores that make the main contribution to the capacity for the corresponding biocatalyst. The binding of trypsin at pH 7.0 and 25°C to aminoorganosilokhrom S-80 activated with glutaraldehyde leads to a uniform distribution over the particle volume. The main contribution to the total capacity for trypsin comes from pores whose sizes are 7–8 times the hydrodynamic diameter of the enzyme macromolecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. H. H. Weetall and N. B. Havewala, Biotechnol. Bioeng. Symp., No. 3, 241–246 (1972).

    Google Scholar 

  2. R. A. Messing, Biotechnol. Bioeng., 16, No. 4, 897–908 (1974).

    Google Scholar 

  3. R. A. Messing, J. Non-Cryst. Solids, 19, No. 2, 277–283 (1975).

    Google Scholar 

  4. P. Monsan, J. Mol. Catal., 3, No. 2, 371–384 (1977/1978).

    Google Scholar 

  5. M. A. Tel'nova and V. M. Stepanov, Khim. Prir. Soedinen., No. 3, 373–379 (1978).

    Google Scholar 

  6. R. P. Yanushevichyute, A. P. Paulyukonis, and D. A. Kazlauskas, Prikl. Biokhim. Mikrobiol., 18, No. 3, 357–366 (1982).

    Google Scholar 

  7. V. M. Kolikov and B. V. Mchedlishvili, Chromatography of Biopolymers on Macroporous Silicas [in Russian], Nauka, Leningrad (1986).

    Google Scholar 

  8. A. A. Chuiko, V. A. Tertykh, G. E. Pavlik, and I. E. Neimark, Kolloid. Zh., 27, No. 6, 903–907 (1965).

    Google Scholar 

  9. N. A. Kononenko, N. P. Berezina, Yu. M. Vol'fkovich, et al., Zh. Prik. Khim., 58, No. 10, 2199–2203 (1985).

    Google Scholar 

  10. J. Muller and T. Zwing, Biochim. Biophys. Acta, 705, No. 1, 117–123 (1982).

    Google Scholar 

  11. D. S. Clark and J. E. Bailey, Biotechnol. Bioeng., 25, No. 4, 1027–1047 (1983).

    Google Scholar 

  12. H. Bernstein, V. C. Yang, and R. Langer, ibid., 30, No. 2, 196–207 (1987).

    Google Scholar 

  13. J. E. Bailey, Enzyme Eng., 6, 213–214 (1982).

    Google Scholar 

  14. M. Kumary, Mater. Sci. Lett., 5, No. 1, 78–80 (1986).

    Google Scholar 

  15. F. Tolda, N. B. Jonson, and G. T. Tsao, J. Chem. Technol. Biotechnol., 40, No. 4, 275–284 (1987).

    Google Scholar 

  16. W. Kopaciewicz, S. Fulton, and S. Y. Lee, J. Chromatogr., 409, 111–124 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 28, No. 3, pp. 271–276, May–June, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyubinskii, G.V., Kalinichenko, E.A. & Tertykh, V.A. Porous structure and trypsin capacity of an activated silica matrix. Theor Exp Chem 28, 216–219 (1993). https://doi.org/10.1007/BF00529425

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00529425

Keywords

Navigation