Skip to main content
Log in

Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the existence of positive solutions for a class of nonlinear Schrödinger equations of the type

$$-{\varepsilon}^2\Delta u + Vu = u^p\quad{{\rm in}\,{\mathbb R}^N},$$

where N ≥ 3, p > 1 is subcritical and V is a nonnegative continuous potential. Amongst other results, we prove that if V has a positive local minimum, and \({\frac{N}{N-2} < p < \frac{N+2}{N-2}}\) , then for small ε the problem admits positive solutions which concentrate as ε → 0 around the local minimum point of V. The novelty is that no restriction is imposed on the rate of decay of V. In particular, we cover the case where V is compactly supported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds. In: Methods of Functional Analysis and Theory of Elliptic Equations (Naples, 1982), pp. 19–52, Liguori, Naples (1983)

  2. Ambrosetti, A., Malchiodi, A.: Concentration phenomena for NLS: recent results and new perspectives, pp. 19–31. Perspectives in nonlinear partial differential equations, vol. 446, pp. 19–30, Contemp. Math. Amer.Math. Soc., Providence (2007)

  3. Ambrosetti A., Malchiodi V.F.A.: Ground states of nonlinear Schrdinger equations with potentials vanishing at infinity. J. Eur. Math. Soc. 7, 117–144 (2005)

    MATH  MathSciNet  Google Scholar 

  4. Ambrosetti A., Malchiodi A., Ruiz D.: Bound states of nonlinear Schrdinger equations with potentials vanishing at infinity. J. Anal. Math. 98, 317–348 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bonheure D., Van Schaftingen J.: Nonlinear Schrödinger equations with potentials vanishing at infinity. C. R. Math. Acad. Sci. Paris 342, 903–908 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Bonheure D., Van Schaftingen J.: Bound state solutions for a class of nonlinear Schrödinger equations. Rev. Mat. Iberoamericana 24, 297–351 (2008)

    MATH  Google Scholar 

  7. Byeon J., Wang Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295–316 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Byeon J., Wang Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. II. Calc. Var. 18, 207–219 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. del Pino M., Felmer P.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. 4, 121–137 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Floer A., Weinstein A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gidas B., Ni W.-M., Nirenberg L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb R^{n}}\) . Adv. Math. Suppl. Stud. 7A, 369–402 (1981)

    MathSciNet  Google Scholar 

  12. Gidas B., Spruck J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 34, 525–598 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kwong M.K.: Uniqueness of positive solutions of Δuu + u p = 0 in \({\mathbb R^{n}}\) . Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kondratiev V., Liskevich V., Sobol Z.: Second-order semilinear elliptic inequalities in exterior domains. J. Differ. Equ. 187, 429–455 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liskevich V., Lyakhova S., Moroz V.: Positive solutions to singular semilinear elliptic equations with critical potential on cone-like domains. Adv. Differ. Equ. 11, 361–398 (2006)

    MATH  MathSciNet  Google Scholar 

  16. Moroz, V., Van Schaftingen, J.: Existence and concentration for nonlinear Schrödinger equations with fast decaying potentials. C. R. Math. Acad. Sci. Paris, (2009, to appear)

  17. Ni W.-M.: Diffusion, cross-diffusion, and their spike-layer steady states. Notices Am. Math. Soc. 45(1), 9–18 (1998)

    MATH  Google Scholar 

  18. Oh Y.G.: Existence of semiclassical bound states of nonlinear Schrödinger equations with potential in the class (V) a . Comm. Partial Diff. Equ. 13, 1499–1519 (1988)

    Article  MATH  Google Scholar 

  19. Oh Y.G.: On positive multi-lump bound states of nonlinear Schödinger equation under multiple well potentials. Comm. Math. Phys. 131, 223–253 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pinchover Y., Tintarev K.: A ground state alternative for singular Schrödinger operators. J. Funct. Anal. 230, 65–77 (2006)

    MATH  MathSciNet  Google Scholar 

  21. Rabinowitz P.: On a class of nonlinear Schrödinger equations. Z. Angew Math. Phys. 43, 270–291 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wang X.: On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys. 153, 229–244 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Willem, M.: Minimax theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Moroz.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moroz, V., Van Schaftingen, J. Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials. Calc. Var. 37, 1–27 (2010). https://doi.org/10.1007/s00526-009-0249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-009-0249-y

Mathematics Subject Classification (2000)

Navigation