Skip to main content
Log in

Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Ultrafiltration is employed as an important process for water treatment and reuse, which is of great significance to alleviate the shortage of water resources. However, it suffers from severe membrane fouling and the trade-off between selectivity and permeability. In this work, a CNTs/ceramic flat sheet ultrafiltration membrane coupled with electro-assistance was developed for improving the antifouling and separation performance. The CNTs/ceramic flat sheet membrane was fabricated by coating cross-linked CNTs on ceramic membrane, featuring a good electroconductivity of 764.75 S/m. In the filtration of natural water, the permeate flux of the membrane with the cell voltage of −2.0 V was 1.8 times higher than that of the membrane without electro-assistance and 5.7-fold greater than that of the PVDF commercial membrane. Benefiting from the electro-assistance, the removal efficiency of the typical antibiotics was improved by 50%. Furthermore, the electro-assisted membrane filtration process showed 70% reduction in energy consumption compared with the filtration process of the commercial membrane. This work offers a feasible approach for membrane fouling mitigation and effluent quality improvement and suggests that the electro-assisted CNTs/ceramic membrane filtration process has great potential in the application of water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed F E, Lalia B S, Kochkodan V, Hilal N, Hashaikeh R (2016). Electrically conductive polymeric membranes for fouling prevention and detection: A review. Desalination, 391: 1–15

    Article  CAS  Google Scholar 

  • Ali S, Rehman S A U, Luan H Y, Farid M U, Huang H O (2019). Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination. Science of the Total Environment, 646: 1126–1139

    Article  CAS  Google Scholar 

  • Ao L, Liu W J, Qiao Y, Li C P, Wang X M (2018). Comparison of membrane fouling in ultrafiltration of down-flow and up-flow biological activated carbon effluents. Frontiers of Environmental Science & Engineering, 12(6): 9

    Article  Google Scholar 

  • Castel C, Favre E (2018). Membrane separations and energy efficiency. Journal of Membrane Science, 548: 345–357

    Article  CAS  Google Scholar 

  • Dudchenko A V, Rolf J, Russell K, Duan W Y, Jassby D (2014). Organic fouling inhibition on electrically conducting carbon nanotube-polyvinyl alcohol composite ultrafiltration membranes. Journal of Membrane Science, 468: 1–10

    Article  CAS  Google Scholar 

  • Enevoldsen A D, Hansen E B, Jonsson G (2007). Electro-ultrafiltration of industrial enzyme solutions. Journal of Membrane Science, 299(1–2): 28–37

    Article  CAS  Google Scholar 

  • Fan X F, Zhao H M, Liu Y M, Quan X, Yu H T, Chen S (2015). Enhanced permeability, selectivity, and antifouling ability of CNTs/Al2O3 membrane under electrochemical assistance. Environmental Science & Technology, 49(4): 2293–2300

    Article  CAS  Google Scholar 

  • Fan X F, Zhao H M, Quan X, Liu Y M, Chen S (2016). Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation. Water Research, 88: 285–292

    Article  CAS  Google Scholar 

  • Goh P S, Ng B C, Lau W J, Ismail A F (2015). Inorganic nanomaterials in polymeric ultrafiltration membranes for water treatment. Separation and Purification Reviews, 44(3): 216–249

    Article  CAS  Google Scholar 

  • Guo X Y, Li C Y, Li C H, Wei T T, Shao H Q, Zhou Q X, Wang L, Liao Y (2020). G-CNTs/PVDF mixed matrix membranes with improved antifouling properties and filtration performance. Frontiers of Environmental Science & Engineering, 13(6): 81

    Article  Google Scholar 

  • Han Y, Xu Z, Gao C (2013). Ultrathin graphene nanofiltration membrane for water purification. Advanced Functional Materials, 23(29): 3693–3700

    Article  CAS  Google Scholar 

  • Ibeid S, Elektorowicz M, Oleszkiewicz J A (2015). Electro-conditioning of activated sludge in a membrane electro-bioreactor for improved dewatering and reduced membrane fouling. Journal of Membrane Science, 494: 136–142

    Article  CAS  Google Scholar 

  • Jhaveri J H, Murthy Z V P (2016). A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination, 379: 137–154

    Article  CAS  Google Scholar 

  • Lee J, Jeong S, Liu Z W (2016). Progress and challenges of carbon nanotube membrane in water treatment. Critical Reviews in Environmental Science and Technology, 46(11–12): 999–1046

    Article  CAS  Google Scholar 

  • Lin Y, Allard L F, Sun Y P (2004). Protein-affinity of single-walled carbon nanotubes in water. Journal of Physical Chemistry B, 108(12): 3760–3764

    Article  CAS  Google Scholar 

  • Liu L F, Liu J D, Bo G, Yang F L, Crittenden J, Chen Y C (2013). Conductive and hydrophilic polypyrrole modified membrane cathodes and fouling reduction in MBR. Journal of Membrane Science, 429: 252–258

    Article  CAS  Google Scholar 

  • Loh I H, Moody R A, Huang J C (1990). Electrically conductive membranes: Synthesis and applications. Journal of Membrane Science, 50(1): 31–49

    Article  CAS  Google Scholar 

  • Ma J, Guo X Y, Ying Y P, Liu D H, Zhong C L (2017). Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance. Chemical Engineering Journal, 313: 890–898

    Article  CAS  Google Scholar 

  • Martí-Calatayud M C, Schneider S, Yuece S, Wessling M (2018). Interplay between physical cleaning, membrane pore size and fluid rheology during the evolution of fouling in membrane bioreactors. Water Research, 147: 393–402

    Article  Google Scholar 

  • Nakajima C, Saito T, Yamaya T, Shimoda M (1998). The effects of chromium compounds on PVA-coated AN and GAP binder pyrolysis, and PVA-coated AN/GAP propellant combustion. Fuel, 77(4): 321–326

    Article  CAS  Google Scholar 

  • Pendergast M M, Hoek E M V (2011). A review of water treatment membrane nanotechnologies. Energy & Environmental Science, 4(6): 1946–1971

    Article  CAS  Google Scholar 

  • Qasim M, Darwish N N, Mhiyo S, Darwish N A, Hilal N (2018). The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination, 443: 143–164

    Article  CAS  Google Scholar 

  • Santhosh C, Velmurugan V, Jacob G, Jeong S K, Grace A N, Bhatnagar A (2016). Role of nanomaterials in water treatment applications: a review. Chemical Engineering Journal, 306: 1116–1137

    Article  CAS  Google Scholar 

  • Sianipar M, Kim S H, Khoiruddin, Iskandar F, Wenten I G (2017). Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Advances, 7(81): 51175–51198

    Article  CAS  Google Scholar 

  • Subramani A, Jacangelo J G (2015). Emerging desalination technologies for water treatment: a critical review. Water Research, 75: 164–187

    Article  CAS  Google Scholar 

  • Sun X H, Wu J, Chen Z Q, Su X, Hinds B J (2013). Fouling characteristics and electrochemical recovery of carbon nanotube membranes. Advanced Functional Materials, 23(12): 1500–1506

    Article  CAS  Google Scholar 

  • Tarazaga C C, Campderrós M E, Padilla A P (2006). Physical cleaning by means of electric field in the ultrafiltration of a biological solution. Journal of Membrane Science, 278(1–2): 219–224

    Article  CAS  Google Scholar 

  • Wei G L, Yu H T, Quan X, Chen S, Zhao H M, Fan X F (2014). Constructing all carbon nanotube hollow fiber membranes with improved performance in separation and antifouling for water treatment. Environmental Science & Technology, 48(14): 8062–8068

    Article  CAS  Google Scholar 

  • Wei K J, Shen C Y, Han W Q, Li J S, Sun X Y, Shen J Y, Wang L J (2017). Advance treatment of chemical industrial tailwater by integrated electrochemical technologies: electrocatalysis, electrodialysis and electro-microfiltration. Chemical Engineering Journal, 310: 13–21

    Article  CAS  Google Scholar 

  • Wu B, Wang R, Fane A G (2017). The roles of bacteriophages in membrane-based water and wastewater treatment processes: A review. Water Research, 110: 120–132

    Article  CAS  Google Scholar 

  • Yang Y, Qiao S, Jin R F, Zhou J T, Quan X (2019). A novel aerobic electrochemical membrane bioreactor with CNTs hollow fiber membrane by electrochemical oxidation to improve water quality and mitigate membrane fouling. Water Research, 151: 54–63

    Article  CAS  Google Scholar 

  • Yin Z, Zheng Y, Wang H, Li J, Zhu Q, Wang Y, Ma N, Hu G, He B, Knop-Gericke A, Schlogl R, Ma D (2017). Engineering interface with one-dimensional Co3O4 nanostructure in catalytic membrane electrode: toward an advanced electrocatalyst for alcohol oxidation. ACS Nano, 11(12): 12365–12377

    Article  CAS  Google Scholar 

  • Yu W Z, Graham N, Liu T (2019). Prevention of UF membrane fouling in drinking water treatment by addition of H2O2 during membrane backwashing. Water Research, 149: 394–405

    Article  CAS  Google Scholar 

  • Zhang J G, Xu Z W, Mai W, Min C Y, Zhou B M, Shan M J, Li Y L, Yang C Y, Wang Z, Qian X M (2013). Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. Journal of Materials Chemistry. A, 1(9): 3101–3111

    Article  CAS  Google Scholar 

  • Zhao W X, Lian L P, Jin X P, Zhang R X, Luo G, Hou H Q, Chen S P, Zhang R N (2020). In situ electron-induced reduction of NOx via CNTs activated by DBD at low temperature. Frontiers of Environmental Science & Engineering, 14(2): 20

    Article  CAS  Google Scholar 

  • Zheng J J, Wang Z W, Ma J X, Xu S P, Wu Z C (2018). Development of an electrochemical ceramic membrane filtration system for efficient contaminant removal from waters. Environmental Science & Technology, 52(7): 4117–4126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank the financial support by the National Natural Science Foundation of China (Grant No. 21936002), Department of Science and Technology of Dalian (2018J11CY012), Liaoning Revitalization Talents Program (XLYC1801003), the Program of Introducing Talents of Discipline to Universities (B13012) and the Fundamental Research Funds for the Central Universities (DUT19TD27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xie Quan.

Additional information

Highlights

• A stable and electroconductive CNTs/ceramic membrane was fabricated.

• The membrane with the electro-assistance exhibited optimal fouling mitigation.

• The removal efficiency was improved by the −2.0 V electro-assistance.

• Electro-assisted filtration is energy-saving than that of commercial membrane.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Du, L., Chen, S. et al. Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance. Front. Environ. Sci. Eng. 15, 11 (2021). https://doi.org/10.1007/s11783-020-1303-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-020-1303-4

Keywords

Navigation