Skip to main content

Synthesis of Ceramic Membranes and Their Application in Wastewater Treatment and Emerging Contaminants Removal

  • Chapter
  • First Online:
Persistent Pollutants in Water and Advanced Treatment Technology

Abstract

Due to its many advantages over other conventional treatment processes, membrane technology has been successfully used in wastewater treatment and desalination. Smaller footprint, higher efficiency, ease of operation & lower chemical consumption with optimum output are some of the inherent benefits of membrane-based treatment processes. However, some challenges associated with membrane technology, such as selectivity-permeability trade-off, fouling, specificity for uncharged contaminants in pressure-driven membranes, and energy consumption, led the scientific community to look for some improvements in membrane systems. These necessitate a new generation membrane with better selectivity & antifouling capability. Membrane technologies have broad applications in the removal of contaminants from drinking water and wastewater. The ceramic membrane has made rapid progress in industrial/municipal wastewater as well as drinking water treatment owing to its advantageous properties over the conventional polymeric membrane in recent decades. The beneficial characteristics of ceramic membranes include fouling resistance, high permeability, good recoverability, chemical stability, long shelf life, and self-cleaning properties and contaminants degradations which have found applications with the recent innovations in both fabrication methods and nanotechnology. Therefore, ceramic membranes hold great promise for potential applications in water treatment. Porous ceramic membranes have gained a commercial foothold in microfiltration (MF) & ultrafiltration (UF) applications in wastewater treatment. Ceramic-based membranes are promising and will soon become key players in water technology. This chapter mainly highlights the research and progress of fabrication methods to synthesize ceramic membranes. Furthermore, wastewater treatment applications of ceramic membranes, including oily wastewater treatment, heavy metal ion removal, industrial wastewater treatment, bacteria and viruses removal, and removal of emerging contaminants from wastewater are presented. Finally, future scope and challenges for further improving low-cost ceramic membranes are also emphasized in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BOD:

Biological oxygen demand

COD:

Chemical oxygen demand

FO:

Forward osmosis

MF:

Microfiltration

MB:

Methylene blue

MBR:

Microbial Bioreactor

NF:

Nanofiltration

RO:

Reverse osmosis

UF:

Ultrafiltration

References

  • Abbasi M, Salahi A, Mirfendereski M, Mohammadi T, Rekabdar F, Hemmati M (2012) Oily wastewater treatment using mullite ceramic membrane. Desalin Water Treat 37:21–30. https://doi.org/10.1080/19443994.2012.661249

    Article  CAS  Google Scholar 

  • Abdullayev A, Bekheet MF, Hanaor DAH, Gurlo A (2019) Materials and applications for low-cost ceramic membranes

    Google Scholar 

  • Advanced Ceramic Membranes and Applications

    Google Scholar 

  • Ahmed I, Iqbal MNH, Dhama K (2017) Enzyme-based biodegradation of hazardous pollutants—an overview. J Exp Biol Agric Sci 5:402–411. https://doi.org/10.18006/2017.5(4).402.411

  • Ajayi BA, Lamidi YD (2015) Formulation of ceramic water filter composition for the treatment of heavy metals and correction of physiochemical parameters in household water. Art Design Rev 03:94–100. https://doi.org/10.4236/adr.2015.34013

    Article  Google Scholar 

  • Alcock RE, Sweetman A, Jones KC (1999) Assessment of organic contaminant fate in waste water treatment plants. I: selected compounds and physicochemical properties. Chemosphere 38:2247–2262. https://doi.org/10.1016/S0045-6535(98)00444-5

  • Ali A, Tufa RA, Macedonio F, Curcio E, Drioli E (2018) Membrane technology in renewable-energy-driven desalination

    Google Scholar 

  • Amin SK, Hassan M, Abdallah H (2016a) An overview of production and development of ceramic membranes

    Google Scholar 

  • Amin SK, Hassan M, Abdallah H (2016b) An overview of production and development of ceramic membranes development of water desalination system view project polymeric membranes preparation and applications in water treatment and desalination view project

    Google Scholar 

  • Ananthashankar R, Ghaly A (2013) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 05:1–18. https://doi.org/10.4172/2157-7048.1000182

  • Arumugham T, Kaleekkal NJ, Gopal S, Nambikkattu J, Rambabu K, Aboulella AM, Ranil Wickramasinghe S, Banat F (2021) Recent developments in porous ceramic membranes for wastewater treatment and desalination: a review

    Google Scholar 

  • Asif MB, Zhang Z (2021) Ceramic membrane technology for water and wastewater treatment: a critical review of performance, full-scale applications, membrane fouling and prospects

    Google Scholar 

  • Azaman F, Al M, Muhamad Nor A, Rafizah W, Abdullah W, Razali H, Zulkifli RC, Abbas M, Zaini A, Ali A (2021) Review on natural clay ceramic membrane: Fabrication and application in water and wastewater treatment

    Google Scholar 

  • Barredo-Damas S, Alcaina-Miranda MI, Iborra-Clar MI, Mendoza-Roca JA (2012) Application of tubular ceramic ultrafiltration membranes for the treatment of integrated textile wastewaters. Chem Eng J 192:211–218. https://doi.org/10.1016/j.cej.2012.03.079

    Article  CAS  Google Scholar 

  • Bello AS, Zouari N, Da’ana DA, Hahladakis JN, Al-Ghouti MA (2021) An overview of brine management: emerging desalination technologies, life cycle assessment, and metal recovery methodologies

    Google Scholar 

  • Ben-Ali M, Hamdi N, Rodriguez MA, Mahmoudi K, Srasra E (2018) Preparation and characterization of new ceramic membranes for ultrafiltration. Ceram Int 44:2328–2335. https://doi.org/10.1016/j.ceramint.2017.10.199

  • Bhattacharya P, Mukherjee D, Dey S, Ghosh S, Banerjee S (2019) Development and performance evaluation of a novel CuO/TiO2 ceramic ultrafiltration membrane for ciprofloxacin removal. Mater Chem Phys 229:106–116. https://doi.org/10.1016/j.matchemphys.2019.02.094

    Article  CAS  Google Scholar 

  • Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HMN (2019) Emerging contaminants of high concern and their enzyme-assisted biodegradation—a review

    Google Scholar 

  • Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM, Mayes AM (2009) Science and technology for water purification in the coming decades. Nanosci Technol: Collect Rev Nat J 452:337–346. https://doi.org/10.1142/9789814287005_0035

    Article  Google Scholar 

  • Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael IH, Valiev GH, Kianfar E (2021) Nanomaterial by sol–gel method: synthesis and application. Advan Mater Sci Eng 2021. https://doi.org/10.1155/2021/5102014

  • Bolong N, Ismail AF, Salim MR, Matsuura T (2009) A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239:229–246. https://doi.org/10.1016/j.desal.2008.03.020

    Article  CAS  Google Scholar 

  • Bouazizi A, Breida M, Karim A, Achiou B, Ouammou M, Calvo JI, Aaddane A, Khiat K, Younssi SA (2017) Development of a new TiO2 ultrafiltration membrane on flat ceramic support made from natural bentonite and micronized phosphate and applied for dye removal. Ceram Int 43:1479–1487. https://doi.org/10.1016/j.ceramint.2016.10.118

    Article  CAS  Google Scholar 

  • Chaturvedi P, Shukla P, Giri BS, Chowdhary P, Chandra R, Gupta P, Pandey A (2021) Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: a review on emerging contaminants

    Google Scholar 

  • Chen P, Ma X, Zhong Z, Zhang F, Xing W, Fan Y (2017) Performance of ceramic nanofiltration membrane for desalination of dye solutions containing NaCl and Na2SO4. Desalination 404:102–111. https://doi.org/10.1016/j.desal.2016.11.014

    Article  CAS  Google Scholar 

  • Chen Y, Lin M, Zhuang D (2022) Wastewater treatment and emerging contaminants: bibliometric analysis

    Google Scholar 

  • Cui ZF, Muralidhara HS (2010) Membrane technology. Membr Technol 3:184–249. https://doi.org/10.1016/C2009-0-19129-8

    Article  Google Scholar 

  • Drain membrane sealing applications ceramic membranes for power plant ap-oxygen transport membranes: dense

    Google Scholar 

  • El-Aswar EI, Ramadan H, Elkik H, Taha AG (2022) A comprehensive review on preparation, functionalization and recent applications of nanofiber membranes in wastewater treatment

    Google Scholar 

  • Elomari H, Achiou B, Karim A, Ouammou M, Albizane A, Bennazha J, Alami.Younssi S, Elamrani I (2017) Influence of starch content on the properties of low cost microfiltration membranes. J Asian Ceram Soc 5:313–319. https://doi.org/10.1016/j.jascer.2017.06.004

  • Emani S, Uppaluri R, Purkait MK (2013) Preparation and characterization of low cost ceramic membranes for mosambi juice clarification. Desalination 317:32–40. https://doi.org/10.1016/j.desal.2013.02.024

    Article  CAS  Google Scholar 

  • Erukhimovich I, de la Cruz MO (2004) Phase equilibria and charge fractionation in polydisperse polyelectrolyte solutions, 48:1685–1718

    Google Scholar 

  • Ewis D, Ashraf Ismail N, Hafiz M, Benamor A, Hawari AH (2021) Nanoparticles functionalized ceramic membranes: fabrication, surface modification, and performance. https://doi.org/10.1007/s11356-020-11847-0/Published

  • Fard AK, McKay G, Buekenhoudt A, al Sulaiti H, Motmans F, Khraisheh M, Atieh M (2018) Inorganic membranes: preparation and application for water treatment and desalination

    Google Scholar 

  • Fatimah I, Sahroni I, Putra HP, Rifky Nugraha M, Hasanah UA (2015) Ceramic membrane based on TiO2-modified kaolinite as a low cost material for water filtration. Appl Clay Sci 118:207–211. https://doi.org/10.1016/j.clay.2015.09.005

    Article  CAS  Google Scholar 

  • Gaudillere C, Serra JM (2016) Freeze-casting: fabrication of highlyporous and hierarchical ceramic supports for energy applications. Bol Soc Esp Ceram Vidrio 55:45–54. https://doi.org/10.1016/j.bsecv.2016.02.002

    Article  CAS  Google Scholar 

  • Global water security and sanitation partnership administtrd bb

    Google Scholar 

  • Goh PS, Ismail AF (2018) A review on inorganic membranes for desalination and wastewater treatment

    Google Scholar 

  • Gopinath P, Pujari M, Kotni TR (2021) Preparation and application of low-cost ceramic membranes for separation of oil-water emulsion. J Phys: Conf Ser. IOP Publishing Ltd

    Google Scholar 

  • Goswami L, Kumar RV, Pakshirajan K, Pugazhenthi G (2019) A novel integrated biodegradation—microfiltration system for sustainable wastewater treatment and energy recovery. J Hazard Mater 365:707–715. https://doi.org/10.1016/j.jhazmat.2018.11.029

    Article  CAS  Google Scholar 

  • Guo H, Zhao S, Wu X, Qi H (2018) Fabrication and characterization of TiO2/ZrO2 ceramic membranes for nanofiltration. Microporous Mesoporous Mater 260:125–131. https://doi.org/10.1016/j.micromeso.2016.03.011

    Article  CAS  Google Scholar 

  • Hamingerova M, Borunsky L, Beckmann M (2015) Membrane technologies for water and wastewater treatment on the European and Indian market. Techview membrane

    Google Scholar 

  • Haque Barbhuiya N, Singh SP. Membrane technology for desalination and wastewater recycling

    Google Scholar 

  • Huang L, Qin H, Hu T, Xie J, Guo W, Gao P, Xiao H (2021) Fabrication of high permeability SiC ceramic membrane with gradient pore structure by one-step freeze-casting process. Ceram Int 47:17597–17605. https://doi.org/10.1016/j.ceramint.2021.03.078

    Article  CAS  Google Scholar 

  • Huang Y, Liu H, Wang Y, Song G, Zhang L (2022) Industrial application of ceramic ultrafiltration membrane in cold-rolling emulsion wastewater treatment. Sep Purif Technol 289:120724. https://doi.org/10.1016/j.seppur.2022.120724

    Article  CAS  Google Scholar 

  • Hubadillah SK, Othman MHD, Harun Z, Ismail AF, Rahman MA, Jaafar J (2017) A novel green ceramic hollow fiber membrane (CHFM) derived from rice husk ash as combined adsorbent-separator for efficient heavy metals removal. Ceram Int 43:4716–4720. https://doi.org/10.1016/j.ceramint.2016.12.122

    Article  CAS  Google Scholar 

  • Hubadillah SK, Othman MHD, Matsuura T, Ismail AF, Rahman MA, Harun Z, Jaafar J, Nomura M (2018) Fabrications and applications of low cost ceramic membrane from kaolin: a comprehensive review. Ceram Int 44:4538–4560. https://doi.org/10.1016/j.ceramint.2017.12.215

    Article  CAS  Google Scholar 

  • Inyinbor AA, Bello OS, Fadiji AE, Inyinbor HE (2018) Threats from antibiotics: a serious environmental concern. J Environ Chem Eng 6:784–793. https://doi.org/10.1016/j.jece.2017.12.056

    Article  CAS  Google Scholar 

  • Isanejad M, Arzani M, Mahdavi HR, Mohammadi T (2017) Novel amine modification of ZIF-8 for improving simultaneous removal of cationic dyes from aqueous solutions using supported liquid membrane. J Mol Liq 225:800–809. https://doi.org/10.1016/j.molliq.2016.11.007

    Article  CAS  Google Scholar 

  • Issaoui M, Limousy L (2019) Low-cost ceramic membranes: synthesis, classifications, and applications

    Google Scholar 

  • Jana S, Saikia A, Purkait MK, Mohanty K (2011) Chitosan based ceramic ultrafiltration membrane: preparation, characterization and application to remove Hg(II) and As(III) using polymer enhanced ultrafiltration. Chem Eng J 170:209–219. https://doi.org/10.1016/j.cej.2011.03.056

    Article  CAS  Google Scholar 

  • Khalili M, Sabbaghi S, Zerafat MM (2015) Preparation of ceramic γ-Al2O3-TiO2 nanofiltration membranes for desalination. Chem Pap 69:309–315. https://doi.org/10.1515/chempap-2015-0023

    Article  CAS  Google Scholar 

  • Kim J, Van Der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment

    Google Scholar 

  • Kumar CM, Roshni M, Vasanth D (2019) Treatment of aqueous bacterial solution using ceramic membrane prepared from cheaper clays: a detailed investigation of fouling and cleaning. J Water Process Eng 29:100797. https://doi.org/10.1016/j.jwpe.2019.100797

    Article  Google Scholar 

  • Lee M, Wu Z, Li K (2015) Advances in ceramic membranes for water treatment. In: Advances in membrane technologies for water treatment: materials, processes and applications. Elsevier Inc, pp 43–82

    Google Scholar 

  • Lee SJ, Kim JH (2014) Differential natural organic matter fouling of ceramic versus polymeric ultrafiltration membranes. Water Res 48:43–51. https://doi.org/10.1016/j.watres.2013.08.038

    Article  CAS  Google Scholar 

  • Li J, Lin H, Li J (2011) Factors that influence the flexural strength of SiC-based porous ceramics used for hot gas filter support. J Eur Ceram Soc 31:825–831. https://doi.org/10.1016/j.jeurceramsoc.2010.11.033

    Article  CAS  Google Scholar 

  • Li Y, Zhang S, Sun H (2017) Application of ceramic membrane in wastewater treatment

    Google Scholar 

  • Li C, Sun W, Lu Z, Ao X, Li S (2020) Ceramic nanocomposite membranes and membrane fouling: a review

    Google Scholar 

  • Lin F, Zhang S, Ma G, Qiu L, Sun H (2018) Application of ceramic membrane in water and wastewater treatment. In: E3S web of conferences. EDP sciences

    Google Scholar 

  • Liquid filtration through ceramic membranes (2017). https://doi.org/10.13140/RG.2.2.15384.39689

  • Liu T, Lei L, Gu J, Wang Y, Winnubst L, Chen C, Ye C, Chen F (2017) Enhanced water desalination performance through hierarchically-structured ceramic membranes. J Eur Ceram Soc 37:2431–2438. https://doi.org/10.1016/j.jeurceramsoc.2017.02.001

    Article  CAS  Google Scholar 

  • Liu L, Luo XB, Ding L, Luo SL (2018) Application of nanotechnology in the removal of heavy metal from water. In: Nanomaterials for the removal of pollutants and resource reutilization. Elsevier, pp 83–147

    Google Scholar 

  • Lu D, Cheng W, Zhang T, Lu X, Liu Q, Jiang J, Ma J (2016) Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion. Sep Purif Technol 165:1–9. https://doi.org/10.1016/j.seppur.2016.03.034

    Article  CAS  Google Scholar 

  • Madaeni SS, Ahmadi Monfared H, Vatanpour V, Arabi Shamsabadi A, Salehi E, Daraei P, Laki S, Khatami SM (2012) Coke removal from petrochemical oily wastewater using γ-Al2O3 based ceramic microfiltration membrane. Desalination 293:87–93. https://doi.org/10.1016/j.desal.2012.02.028

    Article  CAS  Google Scholar 

  • Majewska-Nowak K, Kawiecka-Skowron J (2011) Ceramic membrane behaviour in anionic dye removal by ultrafiltration. Desalin Water Treat 34:367–373. https://doi.org/10.5004/dwt.2011.2806

    Article  CAS  Google Scholar 

  • Mehrotra S, Kiran Kumar V, Man Mohan K, Gajalakshmi S, Pathak B (2021) Bioelectrogenesis from ceramic membrane-based algal-microbial fuel cells treating dairy industry wastewater. Sustain Energy Technol Assessments 48. https://doi.org/10.1016/j.seta.2021.101653

  • Meng S, Zhang M, Yao M, Qiu Z, Hong Y, Lan W, Xia H, Jin X (2019) Membrane fouling and performance of flat ceramic membranes in the application of drinking water purification. Water (Basel) 11:2606. https://doi.org/10.3390/w11122606

  • Mo WY, Chen Z, Leung HM, Leung AOW (2017) Application of veterinary antibiotics in China’s aquaculture industry and their potential human health risks. Environ Sci Pollut Res 24:8978–8989. https://doi.org/10.1007/s11356-015-5607-z

    Article  Google Scholar 

  • Moattari RM, Mohammadi T (2020) Nanostructured membranes for water treatments. In: Nanotechnology in the beverage industry. Elsevier, pp 129–150

    Google Scholar 

  • Monash P, Pugazhenthi G, Saravanan P (2013) Various fabrication methods of porous ceramic supports for membrane applications. Rev Chem Eng 29:357–383. https://doi.org/10.1515/revce-2013-0006

    Article  CAS  Google Scholar 

  • Mondal S, Wickramasinghe SR (2008) Produced water treatment by nanofiltration and reverse osmosis membranes. J Memb Sci 322:162–170. https://doi.org/10.1016/j.memsci.2008.05.039

    Article  CAS  Google Scholar 

  • Nishihora RK, Rachadel PL, Quadri MGN, Hotza D (2018) Manufacturing porous ceramic materials by tape casting—a review

    Google Scholar 

  • Noor SFM, Ahmad N, Khattak MA, Khan MS, Mukhtar A, Kazi S, Badshah S, Khan R (2017) Application of sayong ball clay membrane filtration for Ni(II) removal from industrial wastewater. J Taibah Univ Sci 11:949–954. https://doi.org/10.1016/j.jtusci.2016.11.005

    Article  Google Scholar 

  • Ouammou M, Bennazha J, Achiou B, Elomari H, Ouammou M, Albizane A, Bennazha J, Aaddane A, Younssi SA, El I, Hassani ElA (2018) Study of added starch on characteristics of flat ceramic microfiltration membrane made from natural Moroccan pozzolan preparation of low-cost ceramic membranes from Moroccan geomaterials view project valorization of natural pozzolan in preparation of ceramic membranes view project study of added starch on characteristics of flat ceramic microfiltration membrane made from natural Moroccan pozzolan. Art J Mater Environ Sci 9:1013–1021. https://doi.org/10.26872/jmes.2017.9.3.113

  • Ouyang B, Xu W, Zhang W, Guang C, Mu W (2022) An overview of different strategies involved in an efficient control of emerging contaminants: promising enzymes and the related reaction process. J Environ Chem Eng 108211. https://doi.org/10.1016/J.JECE.2022.108211

  • Paul DR, Sharma R, Nehra SP, Sharma A (2019) Effect of calcination temperature, pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution. RSC Adv 9:15381–15391. https://doi.org/10.1039/c9ra02201e

    Article  CAS  Google Scholar 

  • Perez-Moreno V, Bonilla-Suarez CB, Fortanell-Trejo M, Pedraza-Aboytes G (2012) Seawater desalination using modified ceramic membranes. In: Industrial and engineering chemistry research, pp 5900–5904

    Google Scholar 

  • Qiu M, Fan S, Cai Y, Fan Y, Xu N (2010) Co-sintering synthesis of bi-layer titania ultrafiltration membranes with intermediate layer of sol-coated nanofibers. J Memb Sci 365:225–231. https://doi.org/10.1016/j.memsci.2010.09.005

    Article  CAS  Google Scholar 

  • Radeva J, Gundula Roth A, Göbbert C, Niestroj-Pahl R, Dähne L, Wolfram A, Wiese J (2021) Membranes hybrid ceramic membranes for the removal of pharmaceuticals from aqueous solutions. https://doi.org/10.3390/membranes

  • Ren C, Fang H, Gu J, Winnubst L, Chen C (2015) Preparation and characterization of hydrophobic alumina planar membranes for water desalination. J Eur Ceram Soc 35:723–730. https://doi.org/10.1016/j.jeurceramsoc.2014.07.012

    Article  CAS  Google Scholar 

  • Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R (2013) Pharmaceuticals as emerging contaminants and their removal from water—a review. Chemosphere 93:1268–1287. https://doi.org/10.1016/j.chemosphere.2013.07.059

    Article  CAS  Google Scholar 

  • RoyChoudhury P, Majumdar S, Sarkar S, Kundu B, Sahoo GC (2019) Performance investigation of Pb(II) removal by synthesized hydroxyapatite based ceramic ultrafiltration membrane: bench scale study. Chem Eng J 355:510–519. https://doi.org/10.1016/j.cej.2018.07.155

    Article  CAS  Google Scholar 

  • Saikia J, Sarmah S, Bora JJ, Das B, Goswamee RL (2019) Preparation and characterization of low cost flat ceramic membranes from easily available potters clay for dye separation. Bull Mater Sci 42:1–13. https://doi.org/10.1007/s12034-019-1767-7

    Article  CAS  Google Scholar 

  • Salamanca M, López-Serna R, Palacio L, Hernández A, Prádanos P, Peña M (2021) Study of the rejection of contaminants of emerging concern by a biomimetic aquaporin hollow fiber forward osmosis membrane. J Water Process Eng 40. https://doi.org/10.1016/j.jwpe.2021.101914

  • Samhari O, Younssi SA, Rabiller-Baudry M, Loulergue P, Bouhria M, Achiou B, Ouammou M (2020) Fabrication of flat ceramic microfiltration membrane from natural kaolinite for seawater pretreatment for desalination and wastewater clarification. Desalin Water Treat 194:59–68. https://doi.org/10.5004/dwt.2020.25859

    Article  CAS  Google Scholar 

  • Sandhya Rani SL, Kumar RV (2021) Insights on applications of low-cost ceramic membranes in wastewater treatment: a mini-review. Case Stud Chem Environ Eng 4. https://doi.org/10.1016/j.cscee.2021.100149

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marĩas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades

    Google Scholar 

  • Sharma R, Saini H, Paul DR, Chaudhary S, Nehra SP (2021) Removal of organic dyes from wastewater using Eichhornia crassipes: a potential phytoremediation option. Environ Sci Pollut Res 28:7116–7122. https://doi.org/10.1007/s11356-020-10940-8

    Article  CAS  Google Scholar 

  • Sheikh M, Pazirofteh M, Dehghani M, Asghari M, Rezakazemi M, Valderrama C, Cortina JL (2020) Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: a review

    Google Scholar 

  • Shurygin M, Guenther C, Fuchs S, Prehn V (2021) Effective treatment of the wastewater from ceramic industry using ceramic membranes. Water Sci Technol 83:1055–1071. https://doi.org/10.2166/wst.2021.039

    Article  CAS  Google Scholar 

  • Singh S, Kumar V, Romero R, Sharma K, Singh J (2019) Applications of nanoparticles in wastewater treatment. In: Nanotechnology in the life sciences. Springer Science and Business Media B.V., pp 395–418

    Google Scholar 

  • Sun L, Wang Z, Gao B (2020) Ceramic membranes originated from cost-effective and abundant natural minerals and industrial wastes for broad applications—a review

    Google Scholar 

  • Tai ZS, Abd Aziz MH, Othman MHD, Mohamed Dzahir MIH, Hashim NA, Koo KN, Hubadillah SK, Ismail AF, A Rahman M, Jaafar J (2020) Ceramic membrane distillation for desalination

    Google Scholar 

  • Tomasula PM, Mukhopadhyay S, Datta N, Porto-Fett A, Call JE, Luchansky JB, Renye J, Tunick M (2011) Pilot-scale crossflow-microfiltration and pasteurization to remove spores of Bacillus anthracis (Sterne) from milk. J Dairy Sci 94:4277–4291. https://doi.org/10.3168/jds.2010-3879

    Article  CAS  Google Scholar 

  • Vasanth D, Uppaluri R, Pugazhenthi G (2011a) Influence of sintering temperature on the properties of porous ceramic support prepared by uniaxial dry compaction method using low-cost raw materials for membrane applications. Sep Sci Technol 46:1241–1249. https://doi.org/10.1080/01496395.2011.556097

    Article  CAS  Google Scholar 

  • Vasanth D, Pugazhenthi G, Uppaluri R (2011b) Fabrication and properties of low cost ceramic microfiltration membranes for separation of oil and bacteria from its solution. J Memb Sci 379:154–163. https://doi.org/10.1016/j.memsci.2011.05.050

    Article  CAS  Google Scholar 

  • Vasanth D, Pugazhenthi G, Uppaluri R (2017) Preparation, characterization, and performance evaluation of LTA zeolite–ceramic composite membrane by separation of BSA from aqueous solution. Sep Sci Technol (philadelphia) 52:767–777. https://doi.org/10.1080/01496395.2016.1260142

    Article  CAS  Google Scholar 

  • Vinoth Kumar R, Monash P, Pugazhenthi G (2016) Treatment of oil-in-water emulsion using tubular ceramic membrane acquired from locally available low-cost inorganic precursors. Desalin Water Treat 57:28056–28070. https://doi.org/10.1080/19443994.2016.1179221

    Article  CAS  Google Scholar 

  • Waszak M, Gryta M (2016) The ultrafiltration ceramic membrane used for broth separation in membrane bioreactor. Chem Eng J 305:129–135. https://doi.org/10.1016/j.cej.2015.11.058

    Article  CAS  Google Scholar 

  • Wiesner MR, Hackney J, Sethi S, Jacangelo JG, Laine JM (1994) Cost estimates for membrane filtration and conventional treatment. J Am Water Works Assoc 86:33–41. https://doi.org/10.1002/j.1551-8833.1994.tb06284.x

    Article  CAS  Google Scholar 

  • Wilkinson J, Hooda PS, Barker J, Barton S, Swinden J (2017) Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field

    Google Scholar 

  • Yang Y, Liu G, Liu H, Wang Q, Wang Y, Zhou JER, Chang Q (2022) Separation of oil–water emulsion by disc ceramic membrane under dynamic membrane filtration mode. Sep Purif Technol 300:1–9. https://doi.org/10.1016/j.seppur.2022.121862

  • Yu L, Kanezashi M, Nagasawa H, Tsuru T (2020) Phase inversion/sintering-induced porous ceramic microsheet membranes for high-quality separation of oily wastewater. J Memb Sci 595:117477. https://doi.org/10.1016/j.memsci.2019.117477

    Article  CAS  Google Scholar 

  • Zereffa EA, Desalegn T (2019) Preparation and characterization of sintered clay ceramic membranes water filters. Open Mater Sci 5:24–33. https://doi.org/10.1515/oms-2019-0005

    Article  Google Scholar 

  • Zhang L, Ng TCA, Liu X, Gu Q, Pang Y, Zhang Z, Lyu Z, He Z, Ng HY, Wang J (2020) Hydrogenated TiO2 membrane with photocatalytically enhanced anti-fouling for ultrafiltration of surface water. Appl Catal B 264. https://doi.org/10.1016/j.apcatb.2019.118528

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swatantra P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chauhan, N., Sharma, R., Singh, S.P. (2023). Synthesis of Ceramic Membranes and Their Application in Wastewater Treatment and Emerging Contaminants Removal. In: Sinha, A., Singh, S.P., Gupta, A.B. (eds) Persistent Pollutants in Water and Advanced Treatment Technology. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-99-2062-4_17

Download citation

Publish with us

Policies and ethics