Skip to main content
Log in

Interdiscipline between optoelectronic materials and mechanical sensors: Recent advances of organic triboluminescent compounds and their applications in sensing

光电材料与应力传感的交叉学科: 有机摩擦发光化合物及其传感应用的最新进展

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Triboluminescence, also as known as mechanoluminescence, is an attractive optical behavior that means the light emitted from specific organic and inorganic materials when they are subjected to external forces, such as crushing, deformation, cleaving, vibration. Inorganic triboluminescent materials show great potential for applications in sensing, such as stress sensing, damage detection. However, the triboluminescent mechanism of organic materials should be pushed further as well as their application. In this review, we summarized the history of development and possible mechanism of organic triboluminescent materials, and discussed various applications in sensing field. At the same time, inspired by the existing research progress in inorganic triboluminescent materials, we proposed the flourishing development prospects of organic triboluminescent materials in stress sensors, movement monitoring, imaging stress distribution, visualization of crack propagation, structural diagnosis, and other fields.

摘要

摩擦发光, 也称为机械发光, 是一种特殊的光学现象, 指特定的有机或无机材料在受到外力作 用(如挤压、变形、劈裂、振动等)时的发光行为。无机摩擦发光材料在传感领域已经显示出巨大的应 用潜力, 如应力传感、损伤检测等。然而, 有机摩擦发光材料的摩擦发光机理及其应用还需要进一步 推动。在本文中, 我们总结了有机摩擦发光材料的发展历史和摩擦发光的机理, 以及在传感领域中的 应用。同时, 受到现有无机摩擦发光材料应用的启发, 我们对有机摩擦发光材料在应力传感器、运动 监测、应力成像分布、裂纹扩展可视化、结构诊断等领域的应用前景进行了展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZINK J I. Triboluminescence [J]. Accounts of Chemical Research, 1978, 11(8): 289–295. DOI: https://doi.org/10.1021/ar50128a001.

    Article  MathSciNet  Google Scholar 

  2. ZHOU Hui, DU Yi-de, WU Chen, et al. Understanding the mechanoluminescent mechanisms of manganese doped zinc sulfide based on load effects [J]. Journal of Luminescence, 2018, 203: 683–688. DOI: https://doi.org/10.1016/j.jlumin.2018.07.018.

    Article  Google Scholar 

  3. WU Chen, ZENG Song-shan, WANG Zhao-feng, et al. Efficient mechanoluminescent elastomers for dual-responsive anticounterfeiting device and stretching/strain sensor with multimode sensibility [J]. Advanced Functional Materials, 2018, 28(34): 1803168. DOI: https://doi.org/10.1002/adfm.201803168.

    Article  Google Scholar 

  4. CHANDRA B P, ZINK J I. Triboluminescence and the dynamics of crystal fracture [J]. Physical Review B, 1980, 21(2): 816. DOI: https://doi.org/10.1103/physrevb.21.816.

    Article  Google Scholar 

  5. SWEETING L M. Triboluminescence with and without air [J]. Chemistry of Materials, 2001, 13(3): 854–870. DOI: https://doi.org/10.1021/cm0006087.

    Article  Google Scholar 

  6. ZHANG Jun-cheng, WANG Xu-sheng, MARRIOTT G, et al. Trap-controlled mechanoluminescent materials [J]. Progress in Materials Science, 2019, 103: 678–742. DOI: https://doi.org/10.1016/j.pmatsci.2019.02.001.

    Article  Google Scholar 

  7. WANG Xian-di, ZHANG Han-lu, YU Ruo-meng, et al. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process [J]. Advanced Materials, 2015, 27(14): 2324–2331. DOI: https://doi.org/10.1002/adma.201405826.

    Article  Google Scholar 

  8. QIAN Xin, CAI Zhe-ren, SU Meng, et al. Printable skin-driven mechanoluminescence devices via nanodoped matrix modification [J]. Advanced Materials, 2018, 30(25): 1800291. DOI: https://doi.org/10.1002/adma.201800291.

    Article  Google Scholar 

  9. WONG H Y, LO W S, CHAN W T K, et al. Mechanistic investigation of inducing triboluminescence in lanthanide (III) β-diketonate complexes [J]. Inorganic Chemistry, 2017, 56(9): 5135–5140. DOI: https://doi.org/10.1021/acs.inorgchem.7b00273.

    Article  Google Scholar 

  10. İNCEL A, VARLIKLI C, MCMILLEN C D, et al. Triboluminescent electrospun mats with blue-green emission under mechanical force [J]. The Journal of Physical Chemistry C, 2017, 121(21): 11709–11716. DOI: https://doi.org/10.1021/acs.jpcc.7b02875.

    Article  Google Scholar 

  11. TSENG C H, FOX M A, LIAO J L, et al. Luminescent Pt(II) complexes featuring imidazolylidene-pyridylidene and dianionic bipyrazolate: From fundamentals to OLED fabrications [J]. Journal of Materials Chemistry C, 2017, 5(6): 1420–1435. DOI: https://doi.org/10.1039/c6tc05154e.

    Article  Google Scholar 

  12. WU Zhao-feng, HUANG Xiao-ying. A comparative study on the luminescence of the Cd2+ and Mn2+ coordination polymers based on the same mixed ligands [J]. Chinese Journal of Chemistry, 2016, 34(7): 703–708. DOI: https://doi.org/10.1002/cjoc.201600145.

    Article  Google Scholar 

  13. KARIMATA A, PATIL P H, FAYZULLIN R R, et al. Triboluminescence of a new family of CuI — NHC complexes in crystalline solid and in amorphous polymer films [J]. Chemical Science, 2020, 11(39): 10814–10820.

    Article  Google Scholar 

  14. SCHÖNWEIZ S, SORSCHE D, SCHWARZ B, et al. Structural and reactivity insights into covalently linked Cu(I) complex-Anderson polyoxometalates [J]. Dalton Transactions, 2017, 46(30): 9760–9764. DOI: https://doi.org/10.1039/c7dt02316b.

    Article  Google Scholar 

  15. UBBA E, TAO Yu, YANG Zhi-yong, et al. Organic mechanoluminescence with aggregation-induced emission [J]. Chemistry-an Asian Journal, 2018, 13(21): 3106–3121. DOI: https://doi.org/10.1002/asia.201800926.

    Article  Google Scholar 

  16. XIE Yu-jun, LI Zhen. The development of mechanoluminescence from organic compounds: Breakthrough and deep insight [J]. Materials Chemistry Frontiers, 2020, 4(2): 317–331. DOI: https://doi.org/10.1039/c9qm00580c.

    Article  Google Scholar 

  17. XIE Yu-jun, LI Zhen. Recent advances in the Z/E Isomers of tetraphenylethene derivatives: Stereoselective synthesis, AIE mechanism, photophysical properties, and application as chemical probes [J]. Chemistry–an Asian Journal, 2019, 14(15): 2524–2541. DOI: https://doi.org/10.1002/asia.201900282.

    Article  Google Scholar 

  18. LENCKA M M, RIMAN R E. Encyclopedia of smart materials [M]. New York: Wiley, 2002. DOI: https://doi.org/10.1002/0471216275.

    Google Scholar 

  19. LI Cheng-zhou, XU Chao-nan, ADACHI Y, et al. Real-time detection of axial force for reliable tightening control [C]//Proc SPIE 7522, Fourth International Conference on Experimental Mechanics. 2010, 7522: 989–994. DOI: https://doi.org/10.1117/12.851697.

    Google Scholar 

  20. KIM J S, KIM G W. New non-contacting torque sensor based on the mechanoluminescence of ZnS: Cu microparticles [J]. Sensors and Actuators A: Physical, 2014, 218: 125–131. DOI: https://doi.org/10.1016/j.sna.2014.07.023.

    Article  Google Scholar 

  21. KIM G W, KIM J S. Dynamic torsional response analysis of mechanoluminescent paint and its application to non-contacting automotive torque transducers [J]. Measurement Science and Technology, 2014, 25(1): 015009. DOI: https://doi.org/10.1088/0957-0233/25/1/015009.

    Article  Google Scholar 

  22. HYODO K, TERASAWA Y, XU Chao-nan, et al. Mechanoluminescent stress imaging for hard tissue biomechanics [J]. Journal of Biomechanics, 2012, 45: S263. DOI: https://doi.org/10.1016/S0021-9290(12)70264-6.

    Article  Google Scholar 

  23. TERASAKI N, XU Chao-nan. Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor [J]. IEEE Sensors Journal, 2013, 13(10): 3999–4004. DOI: https://doi.org/10.1109/JSEN.2013.2264665.

    Article  Google Scholar 

  24. TERASAKI N, XU Chao-nan, LI Chen-shu, et al. Visualization of active crack on bridge in use by mechanoluminescent sensor [C]//Health Monitoring of Structural and Biological Systems 2012. San Diego, California: SPIE, 2012. DOI: https://doi.org/10.1117/12.921036.

    Google Scholar 

  25. FUJIO Y, XU Chao-nan, TERASAWA Y, et al. Sheet sensor using SrAl2O4: Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel [J]. International Journal of Hydrogen Energy, 2016, 41(2): 1333–1340. DOI: https://doi.org/10.1016/j.ijhydene.2015.10.073.

    Article  Google Scholar 

  26. JEONG S M, SONG S, LEE S K, et al. Color manipulation of mechanoluminescence from stress-activated composite films [J]. Advanced Materials, 2013, 25(43): 6194–6200. DOI: https://doi.org/10.1002/adma.201301679.

    Article  Google Scholar 

  27. JEONG S M, SONG S, JOO K I, et al. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer [J]. Energy Environ Sci, 2014, 7(10): 3338–3346. DOI: https://doi.org/10.1039/c4ee01776e.

    Article  Google Scholar 

  28. JEONG S M, SONG S, KIM H. Simultaneous dual-channel blue/green emission from electro-mechanically powered elastomeric zinc sulphide composite [J]. Nano Energy, 2016, 21: 154–161. DOI: https://doi.org/10.1016/j.nanoen.2016.01.012.

    Article  Google Scholar 

  29. LIU Lin-sheng, XU Chao-nan, YOSHIDA A, et al. Scalable elasticoluminescent strain sensor for precise dynamic stress imaging and onsite infrastructure diagnosis [J]. Advanced Materials Technologies, 2019, 4(1): 1800336. DOI: https://doi.org/10.1002/admt.201800336.

    Article  Google Scholar 

  30. PATEL D K, COHEN B E, ETGAR L, et al. Fully 2D and 3D printed anisotropic mechanoluminescent objects and their application for energy harvesting in the dark [J]. Materials Horizons, 2018, 5(4): 708–714. DOI: https://doi.org/10.1039/c8mh00296g.

    Article  Google Scholar 

  31. KIM J S, KWON Y N, SHIN N, et al. Mechanoluminescent SrAl2O4: Eu, Dy phosphor for use in visualization of quasidynamic crack propagation [J]. Applied Physics Letters, 2007, 90(24): 241916. DOI: https://doi.org/10.1063/1.2748100.

    Article  Google Scholar 

  32. ZHANG Jing, BAO Lu-ke, LOU Hui-qing, et al. Flexible and stretchable mechanoluminescent fiber and fabric [J]. Journal of Materials Chemistry C, 2017, 5(32): 8027–8032. DOI: https://doi.org/10.1039/c7tc02428b.

    Article  Google Scholar 

  33. KIM G W, CHO M Y, KIM J S. Frequency response analysis of mechanoluminescence in ZnS: Cu for non-contact torque sensors [J]. Sensors and Actuators A: Physical, 2016, 240: 23–30. DOI: https://doi.org/10.1016/j.sna.2016.01.039.

    Article  Google Scholar 

  34. LI C, XU C N, ZHANG L, YAMADA H, et al. Dynamic visualization of stress distribution on metal by mechanoluminescence images [J]. Journal of Visualization, 2008, 11(4): 329–335. DOI: https://doi.org/10.1007/BF03182201.

    Article  Google Scholar 

  35. LIU Ming-li, WU Qi, SHI Hui-fang, et al. Progress of research on organic/organometallic mechanoluminescent materials [J]. Acta Chimica Sinica, 2018, 76(4): 246. DOI: https://doi.org/10.6023/a17110504.

    Article  Google Scholar 

  36. XIE Yu-jun, LI Zhen. Triboluminescence: Recalling interest and new aspects [J]. Chem, 2018, 4(5): 943–971. DOI: https://doi.org/10.1016/j.chempr.2018.01.001.

    Article  Google Scholar 

  37. WU Wen-bo, DUAN Yu-kun, LIU Bin. Mechanoluminescence: Quantitative pressure-brightness relationship enables new applications [J]. Matter, 2020, 2(2): 291–293. DOI: https://doi.org/10.1016/j.matt.2020.01.007.

    Article  Google Scholar 

  38. ZINK J I, KASKA W C. Triboluminescence of hexaphenylcarbodiphosphorane. Emission from a molecular excited state populated by mechanical stress [J]. Journal of the American Chemical Society, 1973, 95(22): 7510–7512. DOI: https://doi.org/10.1021/ja00803a053.

    Article  Google Scholar 

  39. ZINK I J. Triboluminescence of sugars [J]. The Journal of Physical Chemistry C, 1975, 80(3): 248–249. DOI: https://doi.org/10.1021/j100544a007.

    Article  Google Scholar 

  40. HARDY G E, ZINK J I, KASKA W C, et al. Structure and triboluminescence of polymorphs of hexaphenylcarbodiphosphorane [J]. Journal of the American Chemical Society, 1978, 100(25): 8001–8002. DOI: https://doi.org/10.1021/ja00493a035.

    Article  Google Scholar 

  41. CHANDRA B P, ZINK J I. Triboluminescence of crystals containing the triphenyl group [J]. The Journal of Physical Chemistry, 1982, 86(21): 4138–4141. DOI: https://doi.org/10.1021/j100218a009.

    Article  Google Scholar 

  42. SAGE I, HUMBERSTONE L, OSWALD I, et al. Getting light through black composites: Embedded triboluminescent structural damage sensors [J]. Smart Materials and Structures, 2001, 10(2): 332–337. DOI: https://doi.org/10.1088/0964-1726/10/2/320.

    Article  Google Scholar 

  43. LUO J, XIE Z, LAM J W, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole [J]. Chemical Communications (Cambridge, England), 2001 (18): 1740–1741. DOI: https://doi.org/10.1039/b105159h.

  44. ZINK J I, KASKA W C. Triboluminescence of hexaphenylcarbodiphosphorane. Emission from a molecular excited state populated by mechanical stress [J]. Journal of the American Chemical Society, 1973, 95(22): 7510–7512. DOI: https://doi.org/10.1021/ja00803a053.

    Article  Google Scholar 

  45. CHANDRA B P, ZINK J I. Triboluminescence of triclinic crystals [J]. Journal of Luminescence, 1981, 23(3, 4): 363–372. DOI: https://doi.org/10.1016/0022-2313(81)90140-X.

    Article  Google Scholar 

  46. DI Bao-hua, CHEN Yu-lan. Recent progress in organic mechanoluminescent materials [J]. Chinese Chemical Letters, 2018, 29(2): 245–251. DOI: https://doi.org/10.1016/j.cclet.2017.08.043.

    Article  Google Scholar 

  47. XIE Y, TU J, ZHANG T, et al. Mechanoluminescence from pure hydrocarbon AIEgen [J]. Chemical Communications, 2017, 53(82): 11330–11333. DOI: https://doi.org/10.1039/c7cc04663d.

    Article  Google Scholar 

  48. ZHANG Kai, SUN Qi-kun, ZHANG Zhen-zhen, et al. Touch-sensitive mechanoluminescence crystals comprising a simple purely organic molecule emit bright blue fluorescence regardless of crystallization methods [J]. Chemical Communications, 2018, 54(41): 5225–5228. DOI: https://doi.org/10.1039/c8cc02513d.

    Article  Google Scholar 

  49. SUN Qi-kun, ZHANG Kai, ZHANG Zhen-zhen, et al. A simple and versatile strategy for realizing bright multicolor mechanoluminescence [J]. Chemical Communications, 2018, 54(59): 8206–8209. DOI: https://doi.org/10.1039/c8cc04358b.

    Article  Google Scholar 

  50. LIU F, TU J, WANG X, et al. Opposite mechanoluminescence behavior of two isomers with different linkage positions [J]. Chemical Communications (Cambridge, England), 2018, 54(44): 5598–5601. DOI: https://doi.org/10.1039/c8cc03083a.

    Article  Google Scholar 

  51. WANG Can, YU Yun, YUAN Yu-hu, et al. Heartbeat-sensing mechanoluminescent device based on a quantitative relationship between pressure and emissive intensity [J]. Matter, 2020, 2(1): 181–193. DOI: https://doi.org/10.1016/j.matt.2019.10.002.

    Article  Google Scholar 

  52. ZHANG Hao, WEI Yang, HUANG Xiao, et al. Recent development of elastico-mechanoluminescent phosphors [J]. Journal of Luminescence, 2019, 207: 137–148. DOI: https://doi.org/10.1016/j.jlumin.2018.10.117.

    Article  Google Scholar 

  53. CHANDRA B P, KAZA B R. Mechanoluminescence, electroluminescence and high-pressure photoluminescence of Mn(Ph3PO)2Br2 [J]. Journal of Luminescence, 1982, 27(1): 101–107. DOI: https://doi.org/10.1016/0022-2313(82)90032-1.

    Article  Google Scholar 

  54. HOCKING M B, PRESTON D M, ZINK J I. Triboluminescence of 1, 2, 5-triphenylphosphole and related compounds [J]. Journal of Luminescence, 1989, 43(5): 309–322. DOI: https://doi.org/10.1016/0022-2313(89)90101-4.

    Article  Google Scholar 

  55. SWEETING L M, RHEINGOLD A L. Crystal structure and triboluminescence. 1.9-Anthryl carbinols [J]. The Journal of Physical Chemistry, 1988, 92(20): 5648–5655. DOI: https://doi.org/10.1021/j100331a022.

    Article  Google Scholar 

  56. NAKAYAMA H, NISHIDA J I, TAKADA N, et al. Crystal structures and triboluminescence based on trifluoromethyl and pentafluorosulfanyl substituted asymmetric N-phenyl imide compounds [J]. Chemistry of Materials, 2012, 24(4): 671–676. DOI: https://doi.org/10.1021/cm202650u.

    Article  Google Scholar 

  57. NISHIDA J I, OHURA H, KITA Y, et al. Phthalimide compounds containing a trifluoromethylphenyl group and electron-donating aryl groups: Color-tuning and enhancement of triboluminescence [J]. The Journal of Organic Chemistry, 2016, 81(2): 433–441. DOI: https://doi.org/10.1021/acs.joc.5b02191.

    Article  Google Scholar 

  58. NISHIDA J I, OHURA H, KITA Y, et al. Phthalimide compounds containing a trifluoromethylphenyl group and electron-donating aryl groups: Color-tuning and enhancement of triboluminescence [J]. The Journal of Organic Chemistry, 2016, 81(2): 433–441. DOI: https://doi.org/10.1021/acs.joc.5b02191.

    Article  Google Scholar 

  59. LI Jian-an, ZHOU Jing-hong, MAO Zhu, et al. Transient and persistent room-temperature mechanoluminescence from a white-light-emitting AIEgen with tricolor emission switching triggered by light [J]. Angewandte Chemie International Edition, 2018, 57(22): 6449–6453. DOI: https://doi.org/10.1002/anie.201800762.

    Article  Google Scholar 

  60. XU Shi-dang, LIU Ting-ting, MU Ying-xiao, et al. An organic molecule with asymmetric structure exhibiting aggregation-induced emission, delayed fluorescence, and mechanoluminescence [J]. Angewandte Chemie, 2015, 127(3): 888–892. DOI: https://doi.org/10.1002/ange.201409767.

    Article  Google Scholar 

  61. XU Bing-jia, HE Jia-jun, MU Ying-xiao, et al. Very bright mechanoluminescence and remarkable mechanochromism using a tetraphenylethene derivative with aggregation-induced emission [J]. Chemical Science, 2015, 6(5): 3236–3241. DOI: https://doi.org/10.1039/c5sc00466g.

    Article  Google Scholar 

  62. WANG Can, XU Bing-jia, LI Meng-shu, et al. A stable tetraphenylethene derivative: Aggregation-induced emission, different crystalline polymorphs, and totally different mechanoluminescence properties [J]. Materials Horizons, 2016, 3(3): 220–225. DOI: https://doi.org/10.1039/c6mh00025h.

    Article  MathSciNet  Google Scholar 

  63. XIE Y, TU J, ZHANG T, et al. Mechanoluminescence from pure hydrocarbon AIEgen [J]. Chemical Communications (Cambridge, England), 2017, 53(82): 11330–11333. DOI: https://doi.org/10.1039/c7cc04663d.

    Article  Google Scholar 

  64. XU B, LI W, HE J, et al. Achieving very bright mechanoluminescence from purely organic luminophores with aggregation-induced emission by crystal design [J]. Chemical Science, 2016, 7(8): 5307–5312. DOI: https://doi.org/10.1039/c6sc01325b.

    Article  Google Scholar 

  65. GUO Jing-jing, LI Xiang-long, NIE Han, et al. Achieving high-performance nondoped OLEDs with extremely small efficiency roll-off by combining aggregation-induced emission and thermally activated delayed fluorescence [J]. Advanced Functional Materials, 2017, 27(13): 1606458. DOI: https://doi.org/10.1002/adfm.201606458.

    Article  Google Scholar 

  66. ARIVAZHAGAN C, MAITY A, BAKTHAVACHALAM K, et al. Phenothiazinyl boranes: A new class of AIE luminogens with mega stokes shift, mechanochromism, and mechanoluminescence [J]. Chemistry-A European Journal, 2017, 23(29): 7046–7051. DOI: https://doi.org/10.1002/chem.201700187.

    Article  Google Scholar 

  67. NEENA K K, SUDHAKAR P, DIPAK K, et al. Diarylboryl-phenothiazine based multifunctional molecular siblings [J]. Chemical Communications, 2017, 53(26): 3641–3644. DOI: https://doi.org/10.1039/c6cc09717k.

    Article  Google Scholar 

  68. FANG Man-man, YANG Jie, LIAO Qiu-yan, et al. Triphenylamine derivatives: Different molecular packing and the corresponding mechanoluminescent or mechanochromism property [J]. J Mater Chem C, 2017, 5(38): 9879–9885. DOI: https://doi.org/10.1039/c7tc03641h.

    Article  Google Scholar 

  69. YANG Jie, GAO Xu-ming, XIE Zong-liang, et al. Elucidating the excited state of mechanoluminescence in organic luminogens with room-temperature phosphorescence [J]. Angewandte Chemie International Edition, 2017, 56(48): 15299–15303. DOI: https://doi.org/10.1002/anie.201708119.

    Article  Google Scholar 

  70. YANG J, REN Z, XIE Z, et al. AIEgen with fluorescence-phosphorescence dual mechanoluminescence at room temperature [J]. Angewandte Chemie (International Ed in English), 2017, 56(3): 880–884. DOI: https://doi.org/10.1002/anie.201610453.

    Article  Google Scholar 

  71. GONG Yan-bin, ZHANG Pan, GU Ya-rong, et al. The influence of molecular packing on the emissive behavior of pyrene derivatives: Mechanoluminescence and mechanochromism [J]. Advanced Optical Materials, 2018, 6(16): 1800198. DOI: https://doi.org/10.1002/adom.201800198.

    Article  Google Scholar 

  72. LI W, HUANG Q, MAO Z, et al. Alkyl chain introduction: In situ solar-renewable colorful organic mechanoluminescence materials [J]. Angewandte Chemie International Edition, 2018, 57(39): 12727–12732. DOI: https://doi.org/10.1002/anie.201806861.

    Article  Google Scholar 

  73. ZHANG Kai, SUN Qi-kun, ZHANG Zhen-zhen, et al. Touch-sensitive mechanoluminescence crystals comprising a simple purely organic molecule emit bright blue fluorescence regardless of crystallization methods [J]. Chemical Communications, 2018, 54(41): 5225–5228. DOI: https://doi.org/10.1039/c8cc02513d.

    Article  Google Scholar 

  74. SUN Qi-kun, ZHANG Kai, ZHANG Zhen-zhen, et al. A simple and versatile strategy for realizing bright multicolor mechanoluminescence [J]. Chemical Communications, 2018, 54(59): 8206–8209. DOI: https://doi.org/10.1039/c8cc04358b.

    Article  Google Scholar 

  75. MU Y, YANG Z, CHEN J, et al. Mechano-induced persistent room-temperature phosphorescence from purely organic molecules [J]. Chemical Science, 2018, 9(15): 3782–3787. DOI: https://doi.org/10.1039/c8sc00429c.

    Article  Google Scholar 

  76. HUANG Qiu-qin, MEI Xiao-fei, XIE Zong-liang, et al. Photo-induced phosphorescence and mechanoluminescence switching in a simple purely organic molecule [J]. Journal of Materials Chemistry C, 2019, 7(9): 2530–2534. DOI: https://doi.org/10.1039/c8tc06202a.

    Article  Google Scholar 

  77. SUN Qi-kun, TANG Liang-liang, ZHANG Zhen-zhen, et al. Bright NUV mechanofluorescence from a terpyridine-based pure organic crystal [J]. Chemical Communications (Cambridge, England), 2017, 54(1): 94–97. DOI: https://doi.org/10.1039/c7cc08064f.

    Article  Google Scholar 

  78. WAKCHAURE V C, RANJEESH K C, GOUDAPPAGOUDA, et al. Mechano-responsive room temperature luminescence variations of boron conjugated pyrene in air [J]. Chemical Communications, 2018, 54(47): 6028–6031. DOI: https://doi.org/10.1039/c8cc03494j.

    Article  Google Scholar 

  79. XIE Zong-liang, YU Tao, CHEN Jun-ru, et al. Weak interactions but potent effect: Tunable mechanoluminescence by adjusting intermolecular C — H ⋯ π interactions [J]. Chemical Science, 2018, 9(26): 5787–5794. DOI: https://doi.org/10.1039/c8sc01703d.

    Article  Google Scholar 

  80. YANG Jie, QIN Jian-wen, GENG Pei-yao, et al. Molecular conformation-dependent mechanoluminescence: Same mechanical stimulus but different emissive color over time [J]. Angewandte Chemie, 2018, 130(43): 14370–14374. DOI: https://doi.org/10.1002/ange.201809463.

    Article  Google Scholar 

  81. CHEN Yi-tong, XU Chao, XU Bing-jia, et al. Chirality-activated mechanoluminescence from aggregation-induced emission enantiomers with high contrast mechanochromism and force-induced delayed fluorescence [J]. Materials Chemistry Frontiers, 2019, 3(9): 1800–1806. DOI: https://doi.org/10.1039/c9qm00312f.

    Article  Google Scholar 

  82. LI Jian-an, SONG Zi-cun, CHEN Yi-tong, et al. Colour-tunable dual-mode afterglows and helical-array-induced mechanoluminescence from AIE enantiomers: Effects of molecular arrangement on formation and decay of excited states [J]. Chemical Engineering Journal, 2021, 418: 129167. DOI: https://doi.org/10.1016/j.cej.2021.129167.

    Article  Google Scholar 

  83. DANG Qian-xi, HU Lan-zhen, WANG Jia-qiang, et al. Multiple luminescence responses towards mechanical stimulus and photo-induction: The key role of the stuck packing mode and tunable intermolecular interactions [J]. Chemistry-A European Journal, 2019, 25(28): 7031–7037. DOI: https://doi.org/10.1002/chem.201901116.

    Article  Google Scholar 

  84. LI Wen-lang, HUANG Qiu-yi, MAO Zhu, et al. Selective expression of chromophores in a single molecule: Soft organic crystals exhibiting full-colour tunability and dynamic triplet-exciton behaviours [J]. Angewandte Chemie, 2020, 132(9): 3768–3774. DOI: https://doi.org/10.1002/ange.201915556.

    Article  Google Scholar 

  85. LIU Fan, TU Zong-xiao, FAN Yun-hao, et al. Spiro-structure: A good approach to achieve mechanoluminescence property [J]. ACS Omega, 2019, 4(20): 18609–18615. DOI: https://doi.org/10.1021/acsomega.9b02416.

    Article  Google Scholar 

  86. WANG Can, YU Yun, CHAI Zhao-fei, et al. Recyclable mechanoluminescent luminogen: Different polymorphs, different self-assembly effects of the thiophene moiety and recovered molecular packing via simple thermal-treatment [J]. Materials Chemistry Frontiers, 2019, 3(1): 32–38. DOI: https://doi.org/10.1039/c8qm00411k.

    Article  Google Scholar 

  87. ZHAN Li-si, CHEN Zhan-xiang, GONG Shao-long, et al. A simple organic molecule realizing simultaneous TADF, RTP, AIE, and mechanoluminescence: Understanding the mechanism behind the multifunctional emitter [J]. Angewandte Chemie International Edition, 2019, 58(49): 17651–17655. DOI: https://doi.org/10.1002/anie.201910719.

    Article  Google Scholar 

  88. YU Yun, WANG Can, WEI Yao, et al. Halogen-containing TPA-based luminogens: Different molecular packing and different mechanoluminescence [J]. Advanced Optical Materials, 2019, 7(18): 1900505. DOI: https://doi.org/10.1002/adom.201900505.

    Article  Google Scholar 

  89. LI Dan, YANG Jie, WANG Yun-sheng, et al. Bright mechanoluminescent luminogens even in daylight through close intermolecular interaction with the characteristic of hybridized local and charge transfer (HLCT) [J]. Journal of Materials Chemistry C, 2020, 8(31): 10852–10858. DOI: https://doi.org/10.1039/d0tc01095b.

    Article  Google Scholar 

  90. LIU Cong, CHEN Jie-huan, XU Chao, et al. AIEgens with bright mechanoluminescence and thermally activated delayed fluorescence derived from (9H-carbazol-9-yl) (phenyl)methanone [J]. Dyes and Pigments, 2020, 174: 108093. DOI: https://doi.org/10.1016/j.dyepig.2019.108093.

    Article  Google Scholar 

  91. LIU Xiao-jing, GAO Guan-lei, JIANG Hao, et al. Deep insight into reasons for the mechanoluminescence phenomenon of triphenylamine-substituted imidazoles and their distinct mechano-fluorochromic behaviours [J]. RSC Advances, 2020, 10(39): 23187–23195. DOI: https://doi.org/10.1039/d0ra02737e.

    Article  Google Scholar 

  92. LIU Xiao-jing, JIANG Hao, JIA Yan-rong, et al. Position-isomerization-induced switch effect of mechanofluorochromism and mechanoluminescence on carbazolylbenzo[d]imidazoles [J]. Dyes and Pigments, 2020, 172: 107845. DOI: https://doi.org/10.1016/j.dyepig.2019.107845.

    Article  Google Scholar 

  93. YU Yun, FAN Yuan-yuan, WANG Can, et al. Achieving enhanced ML or RTP performance: Alkyl substituent effect on the fine-tuning of molecular packing [J]. Materials Chemistry Frontiers, 2021, 5(2): 817–824. DOI: https://doi.org/10.1039/d0qm00576b.

    Article  Google Scholar 

  94. RUAN Zhi-jun, LIAO Qiu-yan, DANG Qian-xi, et al. Luminous butterflies: Rational molecular design to optimize crystal packing for dramatically enhanced room-temperature phosphorescence [J]. Advanced Optical Materials, 2021, 9(8): 2001549. DOI: https://doi.org/10.1002/adom.202001549.

    Article  Google Scholar 

  95. JEONG S M, SONG S, SEO H J, et al. Battery-free, human-motion-powered light-emitting fabric: Mechanoluminescent textile [J]. Advanced Sustainable Systems, 2017, 1(12): 1700126. DOI: https://doi.org/10.1002/adsu.201700126.

    Article  Google Scholar 

  96. HYODO K, TERASAWA Y, XU Chao-nan, et al. Mechanoluminescent stress imaging for hard tissue biomechanics [J]. Journal of Biomechanics, 2012, 45: S263. DOI: https://doi.org/10.1016/S0021-9290(12)70264-6.

    Article  Google Scholar 

  97. TERASAKI N, YAMADA H, XU Chao-nan. Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source [J]. Catalysis Today, 2013, 201: 203–208. DOI: https://doi.org/10.1016/j.cattod.2012.04.040.

    Article  Google Scholar 

  98. WU Xiang, ZHU Xing-jun, CHONG P, et al. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics [J]. PNAS, 2019, 116(52): 26332–26342. DOI: https://doi.org/10.1073/pnas.1914387116.

    Article  Google Scholar 

  99. TERASAKI N, XU Chao-nan. Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor [J]. IEEE Sensors Journal, 2013, 13(10): 3999–4004. DOI: https://doi.org/10.1109/JSEN.2013.2264665.

    Article  Google Scholar 

  100. LIU Lin-sheng, XU Chao-nan, YOSHIDA A, TU Dong, UENO N, KAINUMA S. Scalable elasticoluminescent strain sensor for precise dynamic stress imaging and onsite infrastructure diagnosis [J]. Advanced Materials Technologies, 2019, 4(1): 1800336. DOI: https://doi.org/10.1002/admt.201800336.

    Article  Google Scholar 

Download references

Funding

Project(51703253) supported by the National Natural Science Foundation of China; Project(2020GXLH-Z-010) supported by Key Research and Development Program of Shaanxi Province, China; Project(2020JQ-168) supported by Shaanxi Science and Technology Fund, China; Project (201906010091) supported by Pearl River Nova Program of Guangzhou, China; Project(cstc2020jcyj-msxmX0931) supported by Chongqing Science and Technology Fund, China; Project (2021A1515010633) supported by Guangdong Basic and Applied Basic Research Foundation, China; Project (202003N4060) supported by the Ningbo Natural Science Foundation, China; Project(SZKFJJ202001) supported by Henan Key Laboratory of Special Protective Materials, China; Project (2020Z073053007) supported by Aerospace Science Foundation of China

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan-shan Wei  (魏珊珊) or Tao Yu  (于涛).

Additional information

Contributors

SUN Hao-dong and DU bei-bei contributed equally to this manuscript. YU Tao and WEI Shan-shan provided the concept and edited the draft of manuscript. SUN Hao-dong and DU bei-bei conducted the first draft of the manuscript. WU Ya-zhang, WANG Hai-lan, ZHANG Xia-yu, WANG Juan and ZHANG Si-min helped to revised the manuscript.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Hd., Du, Bb., Wu, Yz. et al. Interdiscipline between optoelectronic materials and mechanical sensors: Recent advances of organic triboluminescent compounds and their applications in sensing. J. Cent. South Univ. 28, 3907–3934 (2021). https://doi.org/10.1007/s11771-021-4888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4888-2

Key words

关键词

Navigation