Skip to main content
Log in

Quantitative determination of PFC3D microscopic parameters

定量确定PFC3D 细观参数

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

It is important to calibrate micro-parameters for applying partied flow code (PFC) to study mechanical characteristics and failure mechanism of rock materials. Uniform design method is firstly adopted to determine the microscopic parameters of parallel-bonded particle model for three-dimensional discrete element particle flow code (PFC3D). Variation ranges of microscopic of the microscopic parameters are created by analyzing the effects of microscopic parameters on macroscopic parameters (elastic modulus E, Poisson ratio v, uniaxial compressive strength σc, and ratio of crack initial stress to uniaxial compressive strength σci/σc) in order to obtain the actual uniform design talbe. The calculation equations of the microscopic and macroscopic parameters of rock materials can be established by the actual uniform design table and the regression analysis and thus the PFC3D microscopic parameters can be quantitatively determined. The PFC3D simulated results of the intact and pre-cracked rock specimens under uniaxial and triaxial compressions (including the macroscopic mechanical parameters, stress–strain curves and failure process) are in good agreement with experimental results, which can prove the validity of the calculation equations of microscopic and macroscopic parameters.

摘要

细观参数的标定对于应用PFC 研究岩石材料的力学特性和破坏机理具有重要意义。本文首次采 用均匀设计的方法来确定三维离散元颗粒流程序中平行粘结模型的细观参数。通过分析细观参数对宏 观参数(弹性模量E、泊松比v、单轴抗压强度σc、起裂应力与单轴抗压强度比σci/σc)的影响规律, 得 到细观参数的变化范围, 从而建立了细观参数均匀设计表。通过均匀设计表和回归分析, 建立了岩石 材料细观参数与宏观参数的计算公式, 从而可以定量确定PFC3D 细观参数。完整岩石试件和预制裂 纹岩石试件在单轴和三轴压缩下的PFC3D 模拟结果(包括宏观力学参数、应力应变曲线和破坏过程) 与实验结果吻合较好, 验证了该细观参数与宏观参数计算公式的有效性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DUAN K, KWOK C Y, THAM L G. Micromechanical analysis of the failure process of brittle rock [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(6): 618–634. DOI: https://doi.org/10.1002/nag.2329.

    Article  Google Scholar 

  2. HUANG Yan-hua, YANG Sheng-qi, ZHAO Jian. Three-dimensional numerical simulation on triaxial failure mechanical behavior of rock-like specimen containing two unparallel fissures [J]. Rock Mechanics and Rock Engineering, 2016, 49(12): 1–19. DOI: https://doi.org/10.1007/s00603-016-1081-2.

    Google Scholar 

  3. SARFARAZI V, HAERI H, SHEMIRANI A B, HEDAYAT A, HOSSEINI S S. Investigation of ratio of TBM disc spacing to penetration depth in rocks with different tensile strengths using PFC2D [J]. Computers and Concrete, 2017, 20(4): 429–437. DOI: https://doi.org/10.12989/cac.2017.20.4.429.

    Google Scholar 

  4. CHEN S J, YIN D W, JIANG N, WANG F, GUO W J. Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer [J]. Geomechanics and Engineering, 2019, 17(4): 333–342. DOI: https://doi.org/10.12989/gae.2019.17.4.333.

    Google Scholar 

  5. LIU Guang, SUN Wai-ching, LOWINGER S M, ZHANG Zhen-hua, HUANG Ming, PENG Jun. Coupled flow network and discrete element modeling of injection-induced crack propagation and coalescence in brittle rock [J]. Acta Geotechnica, 2019, 14(13): 843–868. DOI: https://doi.org/10.1007/s11440-018-0682-1.

    Article  Google Scholar 

  6. YIN Peng-fei, YANG Sheng-qi. Discrete element modeling of strength and failure behavior of transversely isotropic rock under uniaxial compression [J]. Journal of the Geological Society of India, 2019, 93(2): 235–246. DOI: https://doi.org/10.1007/s12594-019-1158-0.

    Article  Google Scholar 

  7. SAADAT M, TAHERI A. A numerical study to investigate the influence of surface roughness and boundary condition on the shear behaviour of rock joints [J]. Bulletin of Engineering Geology and the Environment, 2020, 19(5): 2483–2498. DOI: https://doi.org/10.1007/s10064-019-01710-z.

    Article  Google Scholar 

  8. CAO R H, CAO P, LIN H, PU C Z, OU K. Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: Experimental studies and particle mechanics approach [J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 763–783. DOI: https://doi.org/10.1007/s00603-015-0779-x.

    Article  Google Scholar 

  9. WU Shun-chuan, XU Xue-liang. A study of three intrinsic problems of the classic discrete element method using flat-joint model [J]. Rock Mechanics and Rock Engineering, 2016, 49(5): 1813–1830. DOI: https://doi.org/10.1007/s00603-015-0890-z.

    Article  Google Scholar 

  10. POTYONDY D O. The bonded-particle model as a tool for rock mechanics research and application: Current trends and future directions [J]. Geosystem Engineering, 2015, 18(1): 1–28. DOI: https://doi.org/10.1080/12269328.2014.998346.

    Article  Google Scholar 

  11. HUANG Chen-chen, YANG Wen-dong, DUAN Kang, FANG Lin-dong, WANG Ling, BO Chun-jie. Mechanical behaviors of the brittle rock-like specimens with multi-non-persistent joints under uniaxial compression [J]. Construction and Building Materials, 2019, 220: 426–443. DOI: https://doi.org/10.1016/j.conbuildmat.2019.05.159.

    Article  Google Scholar 

  12. JU Yang, SUN Hua-fei, XING Ming-xu, WANG Xiao-fei, ZHENG Jiang-tao. Numerical analysis of the failure process of soil-rock mixtures through computed tomography and PFC3D models [J]. International Journal of Coal Science Technology, 2018, 5(2): 126–141. DOI: https://doi.org/10.1007/s40789-018-0194-5.

    Article  Google Scholar 

  13. WANG Xiao, TIAN Long-gang. Mechanical and crack evolution characteristics of coal-rock under different fracture-hole conditions: A numerical study based on particle flow code [J]. Environmental Earth Sciences, 2018, 77(8): 1–10. DOI: https://doi.org/10.1007/s12665-018-7486-3.

    MathSciNet  Google Scholar 

  14. YANG S Q, TIAN W L, HUANG Y H, RANJITH P G, JU Y. An experimental and numerical study on cracking behavior of brittle sandstone containing two non-coplanar fissures under uniaxial compression [J]. Rock Mechanics and Rock Engineering, 2016, 49(4): 1497–1515. DOI: https://doi.org/10.1007/s00603-015-0838-3.

    Article  Google Scholar 

  15. TAWADROUS A S, DEGAGNE D, PIERCE M, MAS IVARS D. Prediction of uniaxial compression PFC3D model micro-properties using artificial neural networks [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(18): 1953–1962. DOI: https://doi.org/10.1002/nag.809.

    Article  MATH  Google Scholar 

  16. SUN M J, TANG H M, HU X L, GE Y F, LU S. Microparameter prediction for a triaxial compression PFC3D model of rock using full factorial designs and artificial neural networks [J]. Geotechnical and Geological Engineering, 2013, 31(4): 1249–1259. DOI: https://doi.org/10.1007/s10706-013-9647-1.

    Article  Google Scholar 

  17. CHEN Peng-yu. Effects of microparameters on macroparameters of flat-jointed bonded-particle materials and suggestions on trial-and-error method [J]. Geotechnical and Geological Engineering. 2017, 35(2): 663–677. DOI: https://doi.org/10.1007/s10706-016-0132-5.

    Article  Google Scholar 

  18. CONG Yu, WANG Zai-quan, ZHENG Ying-ren, FENG Xia-ting. Experimental study on microscopic parameters of brittle materials based on particle flow theory [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031–1040. DOI: https://doi.org/10.11779/CJGE201506009. (in Chinese).

    Google Scholar 

  19. PENG Xia, RAO Qiu-hua, LI Zhuo, ZHANG Jie. Quantitative determination method of mesoscopic parameters of discrete elements based on spherical symmetric design [J]. Journal of Central South University (Science and Technology), 2019(11): 2801–2812. DOI: https://doi.org/10.11817/j.issn.1672-7207.2019.11.019. (in Chinese).

  20. YOON J. Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 871–889. DOI: https://doi.org/10.1016/j.ijrmms.2007.01.004.

    Article  Google Scholar 

  21. FANG K T, MA C, WINKER P, ZHANG Y. Uniform design: Theory and application [J]. Technometrics. 2000, 42(3): 237–248. DOI: https://doi.org/10.1080/00401706.2000.10486045.

    Article  MathSciNet  MATH  Google Scholar 

  22. WANG Yun-teng, ZHOU Xiao-ping, XU Xiao. Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics [J]. Engineering Fracture Mechanics, 2016, 163: 248–273. DOI: https://doi.org/10.1016/j.engfracmech.2016.06.013.

    Article  Google Scholar 

  23. WANG Yun-teng, ZHOU Xiao-ping, KOU Miao-miao. Three-dimensional numerical study on the failure characteristics of intermittent fissures under compressive-shear loads [J]. Acta Geotechnica, 2019, 14(4): 1161–1193. DOI: https://doi.org/10.1007/s11440-018-0709-7.

    Article  Google Scholar 

  24. POTYONDY D O, CUNDALL P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329–1364. DOI: https://doi.org/10.1016/j.ijrmms.2004.09.011.

    Article  Google Scholar 

  25. DING X, ZHANG L, ZHU H, ZHANG Q. Effect of model scale and particle size distribution on PFC3D simulation results [J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 2139–2156. DOI: https://doi.org/10.1007/s00603-013-0533-1.

    Article  Google Scholar 

  26. . The manual of rock mechanics parameters [M]. Beijing: China Water Power Press, 1991.

    Google Scholar 

  27. FANG K T. Uniform design and uniform design table [M]. Beijing: Science Press, 1994.

    Google Scholar 

  28. BRACE W F, PAULDING B W Jr, SCHOLZ C. Dilatancy in the fracture of crystalline rocks [J]. Journal of Geophysical Research, 1966, 71(16): 3939–3953. DOI: https://doi.org/10.1029/JZ071i016p03939.

    Article  Google Scholar 

  29. MARTIN C D. The strength of massive Lac du Bonnet granite around underground openings [D]. Manitoba: University of Manitoba, 1993.

    Google Scholar 

  30. ALBER M, HAUPTFLEISCH U. Generation and visualization of microfractures in Carrara marble for estimating fracture toughness, fracture shear and fracture normal stiffness [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(8): 1065–1071. DOI: https://doi.org/10.1016/S1365-1609(99)00069-6.

    Article  Google Scholar 

  31. YOON Y K. The effect of the loading condition and rock joint roughness on the hydraulic characteristics of rocks [D]. Seoul: Seoul National University, 1992.

    Google Scholar 

  32. CHANG S H. Characterization of stress-induced damage in rock and its application on the analysis of rock damaged zone around a deep tunnel [D]. Seoul: School of Civil, Urban and Geosystem Eng, Seoul National University, 2002.

    Google Scholar 

  33. HUANG Yan-hua, YANG Sheng-qi, ZENG Wei. Experimental and numerical study on loading rate effects of rock-like material specimens containing two unparallel fissures [J]. Journal of Central South University, 2016, 23(6): 1474–1485. DOI: https://doi.org/10.1007/s11771-016-3200-3.

    Article  Google Scholar 

  34. BOBET A. The initiation of secondary cracks in compression [J]. Engineering Fracture Mechanics, 2000, 66(2): 187–219. DOI: https://doi.org/10.1016/S0013-7944(00)00009-6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Li  (李卓).

Additional information

Foundation item

Projects(51474251, 51874351) supported by the National Natural Science Foundation, China

Contributors

RAO Qiu-hua provided the concept of manuscript and simulation calculation, and edited the draft of manuscript. LI Zhuo conducted the literature review, wrote the first draft of the manuscript and conducted the laboratory tests. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

LI Zhuo and RAO Qiu-hua declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Rao, Qh. Quantitative determination of PFC3D microscopic parameters. J. Cent. South Univ. 28, 911–925 (2021). https://doi.org/10.1007/s11771-021-4653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4653-6

Key words

关键词

Navigation