Skip to main content
Log in

Corrosion behaviors and mechanism of electroless Ni-Cu-P/n-TiN composite coating

化学镀 Ni-Cu-P/n-TiN 复合镀层的耐腐蚀行为与机理研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), electrochemical measurements, weight loss tests and Raman spectrometer were used to character the properties of the coating. As the Cu content increased from 7.3 wt% to 24.8 wt%, the corrosion current density of the Ni-Cu-P/n-TiN coating decreased from 10.80 to 4.34 μA. And the inclusion of Cu in Ni-P alloy resulted in refinement and less porosity in microstructure. The addition of TiN resulted in a slight decline in anti-corrosion property of the coating. As the mass loss test showed, Ni-24.8%Cu-P exhibited perfect corrosion resistance. Studies by Raman spectroscopy on coatings proved that Cu(II)3(PO4)(OH)3, Cu(OH)2 and CuO were examined while no compound of nickel was found, and Cu exhibited preferred corrosion in saline solution, providing cathodic protection to Ni alloy.

摘要

本文以碱性柠檬酸为镀液,通过化学镀方法,制备了Ni-Cu-P/n-TiN 复合镀层。分别采用XRD、 SEM 和EDS 分析镀层的物相组成和组成形貌,采用电化学测试、失重试验、拉曼光谱仪来表征镀层 的耐腐蚀性能。实验结果表明:Cu 可细化Ni-Cu-P/n-TiN 胞状组织并减少其结构中的孔隙率,当 Cu 含量在7.3 wt%~24.8 wt% 时,复合镀层Ni-Cu-P/n-TiN 的自腐蚀电流从10.80 μA 下降至 4.34 μA; 而TiN 的掺杂会使复合镀层Ni-Cu-P/n-TiN 的耐腐蚀性能降低。失重试验表明,当Cu 含量为24.8wt% 时,镀层Ni-Cu-P 的耐腐蚀性能较好。通过拉曼曲线分析可知,复合镀层中Cu 表现出优先腐蚀机制, 形成了Cu(II)3(PO4)(OH)3、Cu(OH)2 和CuO 等Cu 金属的腐蚀产物,为镍合金提供了很好的阴极保护 作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASHASSI-SORKHABI H, ES’HAGHI M. Corrosion resistance enhancement of electroless Ni-P coating by incorporation of ultrasonically dispersed diamond nanoparticles [J]. Corrosion Science, 2013, 77(12): 185–193.

    Article  Google Scholar 

  2. BALARAJU J N, MILLATH-JAHAN S, ANANDAN C, RAJAM K S. Studies on electroless Ni–W–P and Ni–W–Cu–P alloy coatings using chloride-based bath [J]. Surface and Coating Technology, 2006, 200(16): 4885–4890.

    Article  Google Scholar 

  3. ASHASSI-SORKHABI H, DOLATI H, PARVINI-AHMADI N, MANZOORI J. Electroless deposition of Ni–Cu–P alloy and study of the influences of some parameters on the properties of deposits [J]. Applied Suface Science, 2002, 185(3, 4): 155–160.

    Article  Google Scholar 

  4. ZHAO Q, LIU Y, ABEL E W. Effect of Cu content in electroless Ni–Cu–P–PTFE composite coatings on their anti-corrosion properties [J]. Materials Chemistry and Physics, 2004, 87(2, 3): 332–325.

    Article  Google Scholar 

  5. SYED A S, GANESA S V, CHANDRAN K, GURUVIAH S. Performance of electroless nickel-tungsten alloys [J]. Key Engineering Materials, 1991, 20–28: 1371–1376.

    Article  Google Scholar 

  6. SRINIVASAN K N, SELVAGANAPATHY T, MEENAKSHI R, JOHN S. Electroless deposition of nickel-cobaltphosphorus nano alloy [J]. Surface Engineering, 2013, 27(1): 65–70.

    Article  Google Scholar 

  7. CHASSING E, CHERCHAOUI M, SRHIRI A. Electrochemical investigation of the autocatalytic deposition of Ni–Cu–P alloys [J]. Journal of Applied Electrochemical, 1993, 23(11): 1169–1174.

    Article  Google Scholar 

  8. LIU Y, ZHAO Q. Study of electroless Ni-Cu-P coatings and their anti-corrosion properties [J]. Applied Surface Science, 2004, 228(1–4): 57–62.

    Article  Google Scholar 

  9. GULLA M. Metal finishing alloy: US, Patent 3764352 [P]. 1973.

    Google Scholar 

  10. ARMYANOV S, GEORGIEVA J, TACHEV D, VALOVA E, NYAGOLOVA N, MEHTA S, LEIBMAN D, RUFFINI A. Electroless deposition of Ni-Cu-P alloys in acidic solutions [J]. Electrochemical Solid-State Letters, 1999, 2(7): 323–325.

    Article  Google Scholar 

  11. GAO Y R, LIU C M, FU S L, LI H Z, SHU X, GAO Y H. Pretreatment process and corrosion resistance of electroless nickel plating on ZM6 magnesium alloy [J]. Journal of Central South University: Science and Technology, 2011, 42(5): 1248–1253. (in Chinese)

    Google Scholar 

  12. SUN W C, TAN M F, LU J H, ZHANG L, ZHOU Q. Corrosion and oxidation resistance of electroless Ni-P-Al2O3 composite coatings on carbon steel [J]. Applied Mechanics and Materials, 2010, 34–35: 831–835.

    Article  Google Scholar 

  13. CHI G J, YAO S W, FAN J, ZHANG Z H, REN G X. Study on photocatalytic antibacterial performance of Ni/TiO2 composite deposits [J]. Material Science and Technology, 2004, 12(1): 52–56.

    Google Scholar 

  14. LIU Y Y, YU J, HUANG H, XU B H, LIU X L, GAO Y, DONG X L. Synthesis and tribological behavior of electroless Ni-P-WC nanocomposite coatings [J]. Surface and Coating Technology, 2007, 201(16, 17): 7246–7251.

    Article  Google Scholar 

  15. SHI L, SUN C, GAO P, ZHOU F, LIU W. Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating [J]. Applied Surface Science, 2006, 252(10): 3591–3599.

    Article  Google Scholar 

  16. BENEA L, BONORA P L, BORELLO A, MARTELLI S. Effect of SiC size dimensions on the corrosion wear resistance of the electrodeposited composite coating [J]. Wear, 2002, 53(1): 23–29.

    Google Scholar 

  17. SAHOO P, DAS S K. Tribology of electroless nickel coatings–A review [J]. Materials & Design, 2011, 32: 1760–1775.

    Article  Google Scholar 

  18. CHEN C K, FENG H M, LIN H C, HONG M H. The effect of heat treatment on the microstructure of electroless Ni-P coatings containing SiC particles [J]. Thin Solid Films, 2002, 416(1): 31–37.

    Article  Google Scholar 

  19. ZHOU H M, HU X Y, LI J. Effect of nano-Al2O3 on corrosion resistance of Ni-P composite coating by electro-brush plating [J]. Surface Technology, 2017, 46(7): 28–32. (in Chinese)

    Google Scholar 

  20. REZRAZI M, DOCHE M L, BERCOT P, HIHN J Y. Au-PTFE composite coatings elaborated under ultrasonic stirring [J]. Surface and Coating Technology, 2005, 192(1): 124–130.

    Article  Google Scholar 

  21. VIDRICH G, CASTAGNET J F, FERKEL H. Dispersion behavior of Al2O3 and SiO2 nanoparticles in nickel sulfamate plating baths of different compositions [J]. Journal of Electrochemical Society, 2005,152(5): 294–297.

    Article  Google Scholar 

  22. ALIREZAEI S, MONIRVAGHEFI S M, SALEHI M, SAARCHI A. Wear behavior of Ni-P and Ni-P-Al2O3 electroless coatings [J]. Wear, 2007, 262(7, 8): 978–985.

    Article  Google Scholar 

  23. SONG Y W, SHAN D Y, CHEN R S, HAN E N. Study on electroless Ni-P-ZrO2 composite coatings on AZ91D magnesium alloys [J]. Surface Engineering, 2007, 23(5): 334–338.

    Article  Google Scholar 

  24. SZCZYGIEL B, TURKIEWICZ A, SERAFINCZUK J. Surface morphology and structure of Ni-P, Ni-P-ZrO2, Ni-W-P, Ni-W-P-ZrO2 coatings deposited by electroless method [J]. Surface and Coatings Technology, 2008, 20(9): 1904–1910.

    Article  Google Scholar 

  25. APACHITEI I, DUSZCZYK J, KATEGEMAN L. Electroless Ni-P composite coatings: The effect of heat treatment on the microhardness of substrate and coating [J]. Scripta Materialia, 1998, 38(9): 1347–1353.

    Article  Google Scholar 

  26. HUANG X, WU Y, QIAN L. The tribological behavior of electroless Ni-P-SiC (nanometer particles) composite coatings [J]. Plating and Surface Finishing, 2004, 91(7): 46–48.

    Google Scholar 

  27. ZHAO F G, HUANG H, WANG F. Texture and mechanical property of brush electroplated (Ni-P)-TiN nanoparticles composite coating [J]. Plating and Finishing, 2010, 32(9): 1–4. (in Chinese)

    Google Scholar 

  28. YU L H, HUANG W G, ZHAO X. Study on Ni-P-nanoTiN electroless composite coating [J]. Surface Technology, 2009, 38(5): 17–19.

    Google Scholar 

  29. LAI C, LI X M, ZOU L K, CHEN Q, XIE B, LI Y L, LI XL, TAO Z. Corrosion of porous silicon in tetramethylammonium hydroxide solution [J]. Corrosion Science, 2014, 85(4): 471–476.

    Article  Google Scholar 

  30. MAFI I R, DEHGHANIAN C. Studying the effects of the addition of TiN nanoparticles to Ni-P electroless coatings [J]. Applied Surface Science, 2011, 258(5): 1876–1880.

    Article  Google Scholar 

  31. AAL A A, ALY M S. Electroless Ni-Cu-P plating onto open cell stainless steel foam [J]. Applied Surface Science, 2009, 255(13): 6652–6655.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li  (李荐).

Additional information

Foundation item: Project(K1403375-11) supported by Science and Technology Planning Project of Changsha, China; Project(2015D009) supported by the Planned Science and Technology Project of Qingyuan City, China; Project(2015B04) supported by the Planned Science and Technology Project of Qingcheng District, Qingyuan City, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Hm., Hu, Xy. & Li, J. Corrosion behaviors and mechanism of electroless Ni-Cu-P/n-TiN composite coating. J. Cent. South Univ. 25, 1350–1357 (2018). https://doi.org/10.1007/s11771-018-3831-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3831-7

Key words

关键词

Navigation