Skip to main content
Log in

Evaluation of the Corrosion Resistance of Hot-Dip Galvanized Magnesium and Aluminum Alloy Coating Using the Taguchi Method

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this research study, the effect of Mg and Al percentage in the galvanized bath, the immersion temperature, and immersion time on the corrosion behavior of the galvanized coating was evaluated. Each parameter level was evaluated three times, and the Taguchi method was employed to design the experiments. The corrosion resistance of the galvanized coatings was evaluated using electrochemical impedance spectroscopy (EIS) and salt spraying methods. Scanning electron microscope and optical microscope (OM) were employed to investigate the morphology of the coatings. The results of the analysis of variance (ANOVA) method found Mg and Al alloying elements as the most influential parameters in the corrosion resistance of the coated specimens. Also, by increasing the amount of Mg and Al in the galvanizing bath, the corrosion resistance of the coatings was improved. Therefore, by adding Mg, no red rust was observed up to 720 h of salt spray, and the corrosion of the white rust was delayed. However, for the coatings with Al and no Mg, red rust was observed after 480 h of salt spray. The optimum parameters for the galvanized coating with the highest corrosion resistance were 0.48 wt% Mg, 0.18 wt% Al, immersion temperature of 450 C, and immersion time of 4 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. F. Bigdeli, M. Javidi, M. Pakshir, A. Khezrloo and M. Tayebi, Risk Assessment of the Corrosion Resistance Performances for Epoxy Coatings under Drilling Environments Using AHP Method, Int. J. Press. Vessel. Pip., 2021, 193, 104470.

    Article  CAS  Google Scholar 

  2. H. Guan, S. Huang, J. Ding, F. Tian, Q. Xu and J. Zhao, Chemical Environment and Magnetic Moment Effects on Point Defect Formations in CoCrNi-Based Concentrated Solid-Solution Alloys, Acta Mater., 2020, 187, p 122–134.

    Article  CAS  Google Scholar 

  3. Z. Zhang, F. Yang, H. Zhang, T. Zhang, H. Wang, Y. Xu and Q. Ma, Influence of CeO2 Addition on Forming Quality and Microstructure of TiCx-Reinforced CrTi4-Based Laser Cladding Composite Coating, Mater. Charact., 2021, 171, 110732.

    Article  CAS  Google Scholar 

  4. S. Peng, S.K. Xie, F. Xiao and L. Jin-Tang, Corrosion Behavior of Spangle on a Batch Hot-Dip Galvanized Zn-0.05Al-0.2Sb Coating in 3.5 Wt.% NaCl Solution, Corros. Sci., 2020, 163, p 108237. https://doi.org/10.1016/j.corsci.2019.108237

    Article  CAS  Google Scholar 

  5. A. Khezrloo, F. Rezazadeh, M. Rajaee, M. Tayebi, E. Aghaie and Y. Behnamian, Effect of Coating Parameters on Microstructure, Corrosion Behavior, Hardness and Formability of Hot-Dip Galfan and Galvanized Coatings, Int. J. Mater. Res., 2021, 112(4), p 321–332.

    Article  CAS  Google Scholar 

  6. A. Khezrloo, F.E. Derabi, M. Tayebi, E. Aghaie and A. Rajaee, Study of 55Al-43.6Zn-1.6Si Alloy Coating Parameters over St37 Steel Sheet via Hot-Dipping Process and Its Corrosion Behavior, SILICON, 2018, 10(6), p 2431–2438.

    Article  CAS  Google Scholar 

  7. D. Nakhaie, A. Kosari, J.M.C. Mol and E. Asselin, Corrosion Resistance of Hot-Dip Galvanized Steel in Simulated Soil Solution: A Factorial Design and Pit Chemistry Study, Corros. Sci., 2020, 164, 108310.

    Article  CAS  Google Scholar 

  8. A. Dong, B. Li, Y. Lu, G. Zhu, H. Xing, D. Shu, B. Sun and J. Wang, Effect of Mg on the Microstructure and Corrosion Resistance of the Continuously Hot-Dip Galvanizing Zn-Mg Coating, Mater., 2017, 10(8), p 980.

    Article  Google Scholar 

  9. M. Meeusen, L. Zardet, A.M. Homborg, M. Lekka, F. Andreatta, L. Fedrizzi, B. Boelen, J.M.C. Mol and H. Terryn, The Effect of Time Evolution and Timing of the Electrochemical Data Recording of Corrosion Inhibitor Protection of Hot-Dip Galvanized Steel, Corros. Sci., 2020, 173, 108780.

    Article  CAS  Google Scholar 

  10. L. Sun, C. Li, C. Zhang, Z. Su and C. Chen, Early Monitoring of Rebar Corrosion Evolution Based on FBG Sensor, Int. J. Struct. Stab. Dyn., 2017, 18(08), p 1840001.

    Article  Google Scholar 

  11. Y. Liu, Q. Sun, W. Li, K.R. Adair, J. Li and X. Sun, A Comprehensive Review on Recent Progress in Aluminum-Air Batteries, Green Energy Environ., 2017, 2(3), p 246–277.

    Article  Google Scholar 

  12. Z. Liu, J. Long, H. Su, S. Cong, K. Chen, P. Wang, Z. Duan, Z. Ma, Z. Zhou, L. Zhang and X. Guo, Understanding the Stress Corrosion Cracking Growth Mechanism of a Cold Worked Alumina-Forming Austenitic Steel in Supercritical Carbon Dioxide, Corros. Sci., 2022, 199, 110179.

    Article  CAS  Google Scholar 

  13. T. Prosek, A. Nazarov, U. Bexell, D. Thierry and J. Serak, Corrosion Mechanism of Model Zinc-Magnesium Alloys in Atmospheric Conditions, Corros. Sci., 2008, 50(8), p 2216–2231.

    Article  CAS  Google Scholar 

  14. T. Prosek, N. Larché, M. Vlot, F. Goodwin and D. Thierry, Corrosion Performance of Zn–Al–Mg Coatings in Open and Confined Zones in Conditions Simulating Automotive Applications, Mater. Corros., 2010, 61(5), p 412–420.

    Article  CAS  Google Scholar 

  15. L. Suarez, F. Leysen, C. Masquelier, D. Warichet and Y. Houbaert, “Effects of Mg Additions on Surface Morphology and Corrosion Resistance of Hot-Dipped Zn Coatings”, Defect Diffus, Forum, 2008, 273–276, p 300–305.

    Google Scholar 

  16. S. Schürz, G.H. Luckeneder, M. Fleischanderl, P. Mack, H. Gsaller, A.C. Kneissl and G. Mori, Chemistry of Corrosion Products on Zn–Al–Mg Alloy Coated Steel, Corros. Sci., 2010, 52(10), p 3271–3279.

    Article  Google Scholar 

  17. J. Elvins, J.A. Spittle, J.H. Sullivan and D.A. Worsley, The Effect of Magnesium Additions on the Microstructure and Cut Edge Corrosion Resistance of Zinc Aluminium Alloy Galvanised Steel, Corros. Sci., 2008, 50(6), p 1650–1658.

    Article  CAS  Google Scholar 

  18. S. Schuerz, M. Fleischanderl, G.H. Luckeneder, K. Preis, T. Haunschmied, G. Mori and A.C. Kneissl, Corrosion Behaviour of Zn–Al–Mg Coated Steel Sheet in Sodium Chloride-Containing Environment, Corros. Sci., 2009, 51(10), p 2355–2363.

    Article  CAS  Google Scholar 

  19. Yang. L, Huang. Y, Hou. Z, Xiao. L, Xu. Y, Dong. X, Li. F, Kurz. G, Sun. B. Li, Z. and Hort, N.“Microstructure, Mechanical Properties and Fracture Behaviors of Large-Scale Sand-Cast Mg-3Y-2Gd-1Nd-0.4Zr Alloy,” J. Magnes. Alloy. (2021)

  20. Kheradmand. A. B, Tayebi. M, Akbari. M. M, and Abbasian. A, “Effect of Quench-Controlled Precipitation Hardening on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Zr Alloys Contain of Sc Micro-Alloying” J. Alloy. Compd. In press 902:163748. ( 2022)

  21. B.-J. Lv, S. Wang, T.-W. Xu and F. Guo, Effects of Minor Nd and Er Additions on the Precipitation Evolution and Dynamic Recrystallization Behavior of Mg–6.0Zn–0.5Mn Alloy, J. Magnes. Alloy., 2021, 9(3), p 840–852.

    Article  CAS  Google Scholar 

  22. W.C. Sievert, P. Forest, L. Geiger et al., Method of Hot Dip Coating with a Zinc Base Alloy Containing Magnesium and the Resulting Product, Us Pat., 1970, 3(505), p 042.

    Google Scholar 

  23. H. Lee, P. Forest and J.W. Halley, Al-Mg-Zn Alloy Coated Ferrous Metal Sheet, Us Pat., 1970, 3(505), p 043.

    Google Scholar 

  24. K. Nishimura, N. Nishimura, H. Shindo and T. Okda, “Developments and Properties Of Zn-Mg Galvanized Steel Sheet DYMAZINC Having Excellent Corrosion Resistance”, Nippon Steel Tech, Rep., 1999, 79, p 63–67.

    Google Scholar 

  25. K. Nishimura, H. Shindo and K. Kato, “Highly Corrosion-Resistant Zn-Mg Alloy Galvanized Steel Sheet For Building Construction Materials”, Nippon Steel Tech, Rep., 2000, 81, p 85–88.

    Google Scholar 

  26. Kawafuku. J, Katoh. J, Toyama. M, Ikeda. K, Nishimoto. H, and Satoh. H, “Properties of Zinc Alloy Coated Steel Sheets Obtained by Continuous Vapor Deposition Pilot-Line,” Proc. - Soc. Automot. Eng. 43-50 (1991)

  27. Ahmadpour. G, Nilforoushan. MR, Shayegh. B, Tayebi. M, and Jesmani. SM, “Effect of Substrate Surface Treatment on the Hydrothermal Synthesis of Zinc Oxide Nanostructures,” Ceram. Int. (2021)

  28. B. Li, A. Dong, G. Zhu, S. Chu, H. Qian, C. Hu, B. Sun and J. Wang, Investigation of the Corrosion Behaviors of Continuously Hot-Dip Galvanizing Zn–Mg Coating, Surf. Coat. Technol., 2012, 206(19), p 3989–3999.

    Article  CAS  Google Scholar 

  29. F. Shan, C. Liu, S. Wang and G. Qi, “Corrosion Resistance of Hot Dip Galvanized Steel Pretreated with Bis-Functional Silanes Modified with Nanoalumina”, Acta Metall, Acta. Metall. Sin., 2008, 21, p 245–252.

    Article  CAS  Google Scholar 

  30. T. Gichuhi, A. Balgeman, S. Prince, C. Wagner, S. O’Brien and A. Adams, Employing Electrochemical Impedance in Predicting Corrosion Events, JCT. Coat. Tech, 2011, 8, p 32–38.

    CAS  Google Scholar 

  31. ASTM B117, “Method of Salt Spray(Fog) Testing, in, American Society for Testing of Material,” Philadelphia USA. (2003)

  32. Aghaie. A, Khezrloo. A, Tayebi. M, Ziarati. M, and Behnamian. Y, “Application of DOE Method in Evaluating for Split Tensile Strength of Slag-Based Boroaluminosilicate Geopolymers Reinforced with Steel Fibers,” J. Aust. Ceram. Soc.(2021)

  33. G.J. Harvey and P.D. Mercer, Aluminum-Rich Alloy Layers Formed during the Hot Dip Galvanizing of Low Carbon Steel, Metall. Trans., 1973, 4(2), p 619–621.

    Article  CAS  Google Scholar 

  34. T. Nakamori, Y. Adachi, T. Toki and A. Shibuya, Effect of Microstructure of Base Steel on Fe-Zn Alloy Growth during Galvanizing of an Interstitial Free Steel, Isij. Int.ISIJ INT, 1996, 36, p 179–186.

    Article  CAS  Google Scholar 

  35. C.E. Jordan and A.R. Marder, Effect of Substrate Grain Size on Iron-Zinc Reaction Kinetics during Hot-Dip Galvanizing, Metall. Mater. Trans. A, 1997, 28(12), p 2683–2694.

    Article  Google Scholar 

  36. M. Gelfi, L. Solazzi and S. Poli, Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires, Mater, 2017, 10(3), p 264.

    Article  Google Scholar 

  37. M. Dutta, A.K. Halder and S.B. Singh, Morphology and Properties of Hot Dip Zn–Mg and Zn–Mg–Al Alloy Coatings on Steel Sheet, Surf. Coatings Technol., 2010, 205(7), p 2578–2584.

    Article  CAS  Google Scholar 

  38. Y. Fu, H. Chen, R. Guo, Y. Huang and M.R. Toroghinejad, Extraordinary Strength-Ductility in Gradient Amorphous Structured Zr-Based Alloy, J. Alloy. Compd., 2021, 888, 161507.

    Article  CAS  Google Scholar 

  39. Y. Zhong, J. Xie, Y. Chen, L. Yin, P. He and W. Lu, Microstructure and Mechanical Properties of Micro Laser Welding NiTiNb/Ti6Al4V Dissimilar Alloys Lap Joints with Nickel Interlayer, Mater. Lett., 2022, 306, 130896.

    Article  CAS  Google Scholar 

  40. X. Li, J. Yan, T. Yu and B. Zhang, Versatile Nonfluorinated Superhydrophobic Coating with Self-Cleaning, Anti-Fouling, Anti-Corrosion and Mechanical Stability, Coll. Surf. A. Phys. Eng. Asp., 2022, 642, 128701.

    Article  CAS  Google Scholar 

  41. C. Guo, Z. Zhang, Y. Wu, Y. Wang, G. Ma, J. Shi, Z. Zhong, Z. Hong, Z. Jin and Y. Zhao, Synergic Realization of Electrical Insulation and Mechanical Strength in Liquid Nitrogen for High-Temperature Superconducting Tapes with Ultra-Thin Acrylic Resin Coating, Supercond. Sci. Technol., 2022, 35(7), p 75014.

    Article  Google Scholar 

  42. L. Zhang, M. Cong, X. Ding, Y. Jin, F. Xu, Y. Wang, L. Chen and L. Zhang, A Janus Fe-SnO2 Catalyst That Enables Bifunctional Electrochemical Nitrogen Fixation, Angew. Chemie Int. Ed., 2020, 59(27), p 10888–10893.

    Article  CAS  Google Scholar 

  43. Y. Wu, Y. Zhao, X. Han, G. Jiang, J. Shi, P. Liu, M.Z. Khan, H. Huhtinen, J. Zhu, Z. Jin and Y. Yamada, Ultra-Fast Growth of Cuprate Superconducting Films: Dual-Phase Liquid Assisted Epitaxy and Strong Flux Pinning, Mater. Today Phys., 2021, 18, 100400.

    Article  CAS  Google Scholar 

  44. T.V. Reshetenko, G. Bender, K. Bethune and R. Rocheleau, Effects of Local Variations of the Gas Diffusion Layer Properties on PEMFC Performance Using a Segmented Cell System, Electrochim. Acta, 2012, 80, p 368–376.

    Article  CAS  Google Scholar 

  45. P. Volovitch, C. Allely and K. Ogle, Understanding Corrosion via Corrosion Product Characterization: I. Case Study of the Role of Mg Alloying in Zn–Mg Coating on Steel, Corros. Sci., 2009, 51(6), p 1251–1262.

    Article  CAS  Google Scholar 

  46. S. Kim, J.Y. Huh, G.-J. Chung, H.-S. Hwang and S.-H. Kim, Dendritic Morphologies of Hot-Dip Galvanized Zn-0.2 Wt Pct Al Coatings on Steel Sheets, Metall. Mater. Trans. A, 2019, 50(7), p 3186.

    Article  CAS  Google Scholar 

  47. S.T. Vagge and V. Raja, Influence of Strontium on Electrochemical Corrosion Behavior of Hot-Dip Galvanized Coating, Surf. Coat. Technol., 2009, 203, p 3092–3098.

    Article  CAS  Google Scholar 

  48. W.R. Osório, C.M. Freire and A. Garcia, The Effect of the Dendritic Microstructure on the Corrosion Resistance of Zn–Al Alloys, J. Alloy. Compd., 2005, 397(1), p 179–191.

    Article  Google Scholar 

  49. R. Jones and K. Thomas, “The Decomposition of Near-Eutectoid Zinc-Aluminium Alloys”, Philos. Mag. A-physics Condens. Matter Struct. Defects Mech, Prop.PHIL. MAG. A, 1970, 22, p 427–430.

    Article  CAS  Google Scholar 

  50. W.R. Osório, D.M. Rosa and A. Garcia, The Roles of Cellular and Dendritic Microstructural Morphologies on the Corrosion Resistance of Pb–Sb Alloys for Lead Acid Battery Grids, J. Power. Sour, 2008, 175(1), p 595–603.

    Article  Google Scholar 

  51. G. Song, A.L. Bowles and D.H. StJohn, Corrosion Resistance of Aged Die Cast Magnesium Alloy AZ91D, Mater. Sci. Eng. A, 2004, 366(1), p 74–86.

    Article  Google Scholar 

  52. J. Xie, J. Zhang, Z. Zhang, Q. Yang, K. Guan, Y. He, R. Wang, H. Zhang, X. Qiu, R. Wu, New Insights on the Different Corrosion Mechanisms of Mg Alloys with Solute-enriched Stacking Faults or Long Period Stacking Ordered Phase. Corros. Sci., 2022, 198, p 110163. https://doi.org/10.1016/j.corsci.2022.110163

    Article  CAS  Google Scholar 

  53. T. Xin, S. Tang, F. Ji, L. Cui, B. He, X. Lin, X. Tian, H. Hou, Y. Zhao, M. Ferry, Phase Transformations in an Ultralight BCC Mg Alloy during Anisothermal Ageing. Acta Mater., 2022, 239, p 118248. https://doi.org/10.1016/j.actamat.2022.118248

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Tayebi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheirifard, R., Ahmadi, N.P., Aghaie, E. et al. Evaluation of the Corrosion Resistance of Hot-Dip Galvanized Magnesium and Aluminum Alloy Coating Using the Taguchi Method. J. of Materi Eng and Perform 32, 6054–6071 (2023). https://doi.org/10.1007/s11665-022-07536-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07536-3

Keywords

Navigation