Skip to main content
Log in

A plasticity model for sand-structure interfaces

  • Published:
Journal of Central South University Aims and scope Submit manuscript

An Erratum to this article was published on 03 June 2012

Abstract

The predictive capacity of numerical analyses in geotechnical engineering depends strongly on the efficiency of constitutive models used for modeling of interfaces behavior. Interfaces are considered as thin layers of the soil adjacent to structures boundary whose major role is transferring loads from structures to soil masses. An interface model within the bounding surface plasticity framework and the critical state soil mechanics is presented. To this aim, general formulation of the interface model according to the bounding surface plasticity theory is described first. Similar to granular soils, it has been shown that the mechanical behavior of sand-structure interfaces is highly affected by the interface state that is the combined influences of density and applied normal stress. Therefore, several ingredients of the model are directly related to the interface state. As a result of this feature, the model is enabled to distinguish interfaces in dense state from those in loose state and to provide realistic predictions over wide ranges of density and normal stress values. In evaluation of the model, a reasonable correspondence between the model predictions and the experimental data of various research teams is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. POTYONDY J G. Skin friction between various soils and construction material [J]. Géotechnique, 1961, 11(4): 331–53.

    Article  Google Scholar 

  2. DESAI C S, DRUMM E C, ZAMAN M M. Cyclic testing and modeling of interfaces [J]. J Geotech Eng ASCE, 1985, 111(6): 793–815.

    Article  Google Scholar 

  3. GHIONNA V N, MORTARA G. An elastoplastic model for sand-structure interface behavior [J]. Géotechnique, 2002, 52(1): 41–50.

    Article  Google Scholar 

  4. HU L, PU J. Testing and modeling of soil-structure interface [J]. ASCE J Geotech Geoenviron Eng, 2004, 130(8): 851–860.

    Article  Google Scholar 

  5. MORTARA G, MANGIOLA A, GHIONNA V N. Cyclic shear stress degradation and post-cyclic behavior from sand-steel interface direct shear tests [J]. Canadian Geotechnical Journal, 2007, 44: 739–752.

    Article  Google Scholar 

  6. BRUMUND W F, LEONARDS G A. Experimental study of static and dynamic friction between sand and typical construction materials [J]. J Test Eval, 1973, 1(2): 162–165.

    Article  Google Scholar 

  7. ZEGHAL M, EDIL T. Soil structure interaction analysis: Modeling the interface [J]. Can Geotech J, 2002, 39: 620–628.

    Article  Google Scholar 

  8. YOSHIMI Y, KISHIDA T. A ring torsion apparatus for evaluating friction between soil and metal surfaces [J]. Geotech Test J, 1981, 4(4): 145–152.

    Article  Google Scholar 

  9. KISHIDA H, UESUGI M. Tests of interfaces between sand and steel in simple shear apparatus [J]. Géotechnique, 1987, 37(1): 45–52.

    Article  Google Scholar 

  10. EVGIN E, FAKHARIAN K. Effect of stress path on the behavior of sand-steel interface [J]. Can Geotech J, 1996, 33: 853–865.

    Article  Google Scholar 

  11. DEJONG J T, WESTGATE Z J. Role of initial state, material properties, and confinement condition on local and global soil structure interface behavior [J]. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1646–1660.

    Article  Google Scholar 

  12. JENSEN R P, BOSSCHER P J, PLESHA M E, EDIL T B. DEM simulation of granular media-structure interface: Effect of structure roughness and particle shape [J]. Int J Numer Anal Meth Geomech, 1999, 23: 531–547.

    Article  MATH  Google Scholar 

  13. WANG J, DOVE J E, GUTIERREZ M S. Determining particulate-solid interphase strength using shear induce anisotropy [J]. Granular Matter, 2007, 9: 231–240.

    Article  MATH  Google Scholar 

  14. CLOUGH G W, DUNCAN J M. Finite element analysis of retaining wall behavior [J]. J Soil Mech & Found Div ASCE, 1971, 97(SM12): 1657–1672.

    Google Scholar 

  15. BRANDT J R T. Behavior of soil-concrete interfaces [D]. Canada: University of Alberta, 1985.

    Google Scholar 

  16. GHABOUSSI J, WILSON E L, ISENBERG J. Finite element for rock joints and interfaces [J]. J Soil Mech & Found Div ASCE, 1973, 99(SM10): 833–848.

    Google Scholar 

  17. de GENNARO V, FRANK R. Elasto-plastic analysis of the interface behavior between granular media and structure [J]. Comput Geotech, 2002, 29: 547–572.

    Article  Google Scholar 

  18. DESAI C S, MA Y. Modeling of joints and interfaces using the disturbed state concept [J]. Int J Numer Anal Meth Geomech, 1992, 16: 623–653.

    Article  MATH  Google Scholar 

  19. MORTARA G, BOULON M, GHIONNA V N. A 2-D constitutive model for cyclic interface behavior [J]. Int J Numer Anal Meth Geomech, 2002, 26: 1071–1096.

    Article  MATH  Google Scholar 

  20. LIU H, SONG E, LING H I. Constitutive modeling of soil-structure interface through the concept of critical state soil mechanics [J]. Mechanics Research Communications, 2006, 33: 515–531.

    Article  MATH  Google Scholar 

  21. LASHKARI A. Modeling sand-structure interfaces under rotational shear [J]. Mechanics Research Communications, 2010, 37: 22–37.

    Article  Google Scholar 

  22. DAFALIAS Y F, POPOV E P. A model of nonlinearly hardening materials for complex loadings [J]. Acta Mechanica, 1975, 21: 173–192.

    Article  MATH  Google Scholar 

  23. DAFALIAS Y F. Bounding surface plasticity. I: Mathematical foundation and hypoplasticity [J]. ASCE J Engng Mech, 1986, 112(9): 966–987.

    Google Scholar 

  24. MANZARI M T, DAFALIAS Y F. A critical state two surface plasticity model for sands [J]. Géotechnique, 1997, 47(2): 255–272.

    Article  Google Scholar 

  25. DAFALIAS Y F, MANZARI M T. Simple plasticity sand model accounting for fabric change effects [J]. ASCE J Engng Mech, 2004, 130(6): 622–634.

    Article  Google Scholar 

  26. GAJO A, WOOD D M. Severn-Trent sand: A kinematic-hardening constitutive model: The q-p formulation [J]. Géotechnique, 1999, 49(5): 595–614.

    Article  Google Scholar 

  27. GAJO A, WOOD D M. A kinematic hardening constitutive model for sands: A multiaxial formulation [J]. Int J Numer Anal Methods Geomech, 1999, 23: 925–965.

    Article  MATH  Google Scholar 

  28. LI X S. A sand model with state dependent dilatancy [J]. Géotechnique, 2002, 52(3): 173–186.

    Article  Google Scholar 

  29. LASHKARI A. On the modeling of the state dependency of granular soils [J]. Computers and Geotechnics, 2009, 36: 1237–1245.

    Article  Google Scholar 

  30. LI X S, DAFALIAS Y F. Constitutive modeling of inherently sand behavior [J]. ASCE J Geotech Geoenviron Eng, 2002, 128(10): 868–880.

    Article  Google Scholar 

  31. DAFALIAS Y F, PAPADIMITRIOU A G, LI X S. Sand plasticity model accounting for inherent fabric anisotropy [J]. ASCE J Engng Mech, 2004, 130(11): 1319–1333.

    Article  Google Scholar 

  32. CHIU C F, NG C W W. A state-dependent elasto-plastic model for saturated and unsaturated soils [J]. Géotechnique, 2003, 53(9): 809–829.

    Article  Google Scholar 

  33. TAIEBAT M, DAFALIAS Y F. SANISAND: Simple anisotropic sand plasticity model [J]. Int J Numer Anal Meth Geomech, 2008, 32(8): 915–948.

    Article  Google Scholar 

  34. YIN Zong-ze, ZHU Hong, XU Guo-hua. A study of deformation in the interface between soil and concrete [J]. Computers and Geotechnics, 1995, 17(1): 75–92.

    Article  Google Scholar 

  35. PASTOR M, MANZANAL D, FERNÁNDEZ MERODO J A, MIRA P, BLANC T, DREMPETIC V, PASTOR M J, HADDAD B, SÁNCHEZ M. From solids to fluidized soils: Diffuse failure mechanisms in geostructures with applications to fast catastrophic landslides [J]. Granular Matter, 2010, 12(3): 211–228.

    Article  Google Scholar 

  36. SHAHROUR I, REZAIE F. An elastoplastic constitutive relation for the soil-structure interface under cyclic loading [J]. Computers and Geotechnics, 1997, 21: 21–39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lashkari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lashkari, A. A plasticity model for sand-structure interfaces. J. Cent. South Univ. Technol. 19, 1098–1108 (2012). https://doi.org/10.1007/s11771-012-1115-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-012-1115-1

Key words

Navigation