Skip to main content
Log in

From solids to fluidized soils: diffuse failure mechanisms in geostructures with applications to fast catastrophic landslides

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Geomaterials are mixtures of solids with voids which are filled by fluids such as air and water. Due to the strong coupling between phases, pore pressures can be generated if loading is applied fast enough. In the case of loose metastable materials, unstable behavior and catastrophic failure can happen. An important case is that of fast catastrophic landslides with large velocities caused by high pore pressures in their lower part. The purpose of this paper is to present mathematical, constitutive and rheological models which describe the most relevant phenomena, together with discretization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagnold R.A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. Royal Soc. A 225, 49–63 (1954)

    Article  ADS  Google Scholar 

  2. Been K., Jefferies M.: A state parameter for sands. Géotechnique 35, 99–112 (1985)

    Article  Google Scholar 

  3. Biot M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Castro, G.: Liquefaction of sands, Ph.D. thesis, Harvard University, Harvard Soil Mechanics Series no. 81 (1969)

  5. Chen C.L., Ling C.H.: Granular-flow rheology: role of shear-rate number in transition regime. J. Eng. Mech. ASCE 122(5), 469–481 (1996)

    Article  Google Scholar 

  6. Coulomb, C.A.: Essai sur une application des régles de maxi- mis et minimis à quelques problémes de statique relatifs a l’architecture”. Mémoires de Mathématique et de Physique, présentés à l’Académie Royale des Sciences par Divers Savants et lus dans ses Assemblées, 7, Paris, France, 343–382 (1773)

  7. Coussy O.: Mechanics of Porous Media. Wiley, Chichester (1995)

    Google Scholar 

  8. Darve F.: Liquefaction phenomenon of granular materials and constitutive instability. Int. J. Eng. Comp. 7, 5–28 (1995)

    Google Scholar 

  9. Darve F., Laouafa F.: Instabilities in granular materials and application to landslides. Mech. Coh.-Frict. Mater. 5(8), 627–652 (2000)

    Article  Google Scholar 

  10. Darve F., Laouafa F.: Modelling of slope failure by a material instability mechanism. Comput. Geotech. 29, 301–325 (2001)

    Google Scholar 

  11. de Boer R.: Theory of Porous Media. Springer, Berlin (2000)

    MATH  Google Scholar 

  12. Dikau R., Cavallin A., Jager S.: Databases and GIS for landslide research in Europe. Geomorphology 15(3–4), 227–239 (1996)

    Article  ADS  Google Scholar 

  13. Di Prisco C., Matiotti R., Nova R.: Theoretical investigation of undrained stability of shallow submerged slopes. Geotechnique 45, 479–496 (1995)

    Article  Google Scholar 

  14. Evans, S.G., Bent, A.L.: The las Colinas Landslide, Santa Tecla: a highly destructive flowslide triggered by the Jan 13, 2001, El Salvador earthquake. In: Rose W.T., et al. (eds.) Natural Hazards in El Salvador: Geological Society of America Special Paper 375, pp. 25–37 (2004)

  15. Fernández Merodo J.A., Pastor M., Mira P., Tonni L., Herreros I., González E., Tamagnini R.: Modelling of diffuse failure mechanisms of catastrophic landslides. Comp. Methods Appl. Mech. Eng. 193, 2911–2939 (2004)

    Article  MATH  Google Scholar 

  16. Fisher R.A.: On the capillary forces in an ideal soil; correction of formulas by W.B. Haines. J. Agric. Sci. 16, 492–505 (1926)

    Article  Google Scholar 

  17. Gallipoli D., Gens A., Sharma R., Vaunat J.: An elastoplastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour. Géotechnique 53(1), 123–135 (2003)

    Google Scholar 

  18. Gens, A., Nova, R.: Conceptual bases for a constitutive model for bonded soils and weak rocks. In: Proceedings of International Symposium on Geotechnical Engineering of Hard Soils-Soft Rocks, pp. 485–494. Rótterdam, Balkema (1993)

  19. Haines W.B.: Studies in the physical properties of soils. A note on the cohesion developed by capillary forces in an ideal soil. J. Agric. Sci. 15, 529–535 (1925)

    Article  Google Scholar 

  20. Hanes D.M., Inman D.L.: Observations of rapidly flowing granular-fluid materials. J. Fluid Mech. 150, 357–380 (1985)

    Article  ADS  Google Scholar 

  21. Herschel W.H., Bulkley R.: Konsistenzmessungen von Gummi-Benzollösungen. Kolloid Zeitschrift 39, 291–300 (1926)

    Article  Google Scholar 

  22. Houlsby G.T.: The work input to an unsaturated granular material. Géotechnique 47(1), 193–196 (1997)

    Article  Google Scholar 

  23. Hutchinson J.N.: A sliding-consolidation model for flow slides. Can. Geotech. J. 23, 115–126 (1986)

    Article  Google Scholar 

  24. Iverson R.M.: Differential equations governing slip-induced pore pressure fluctuations in a water-saturated granular medium. Math. Geol. 25(8), 1027–1048 (1993)

    Article  Google Scholar 

  25. Iverson R.I., Denlinger R.P.: Flow of variably fluidized granular masses across three dimensional terrain. 1. Coulomb mixture theory. J. Geophys. Res. 106(N0.B1), 537–552 (2001)

    Article  ADS  Google Scholar 

  26. Iverson R.M., LaHusen R.G.: Dynamic pore-pressure fluctuations in rapidly shearing granular materials. Science 246, 796–799 (1989)

    Article  ADS  Google Scholar 

  27. Konagai, K., Johansson, J., Mayorca, P., Uzuoka, R., Yamamoto, T., Miyajima, M., Pulido, N., Sassa, K., Fujuoka, H., Duran, F.: Las Colinas landslide, Santa Tecla: rapid and long-traveling soil flow caused by the January 13th, 2001, El Salvador earthquake. In: Rose, W.I, Bommer, J.J., Lopez, D.L., Carr, M.J., Major, J.J. (eds.) Natural Hazards in El Salvador, pp. 25–37 (2004)

  28. Lagioia R., Nova R.: An experimental and theoretical study of the behaviour of a calcarenite in triaxial compression. Geotechnique 45(4), 633–648 (1995)

    Article  Google Scholar 

  29. Lewis R.W., Schrefler B.A.: The Finite Element Method in the Deformation and Consolidation of Porous Media. Wiley, Chichester (1987)

    Google Scholar 

  30. Li X.L.: Modelling of dilative shear failure. J. Geotech. Geoenviron. Eng. 123, 609–616 (1997)

    Article  Google Scholar 

  31. Li X.L., Dafalias Y.F.: Dilatancy for cohesionless soils. Géotechnique 50, 449–460 (2000)

    Article  Google Scholar 

  32. Lotti, C.C.: E.Hydro, Informe Final. Análisis Evaluación Modelos Numéricos Equlibrio Límite”. Anexo 2.2.1.1 (2001) (in spanish)

  33. Maâtouk A., Leroueil S., LaRochelle P.: Yielding and critical state of a collapsible unsaturated silty soil. Geotechnique 45(3), 465–477 (1995)

    Article  Google Scholar 

  34. Manzanal, D.: Constitutive model based on generalized plasticity incorporating state parameter for saturated and unsaturated sand (Spanish). PhD Thesis School of Civil Engineering, Polytechnic University of Madrid (2008)

  35. Nicot F., Wan R., (eds): Micromécanique de la rupture dans les milieux granulaires. Hermes Science Lavoisier, France (2008)

    Google Scholar 

  36. Nova R.: Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes. J. Mech. Behav. Mater. 5, 193–201 (1994)

    Google Scholar 

  37. Pastor, M., Zienkiewicz, O.C.: A generalized plasticity, hierarchical model for sand under monotonic and cyclic loading. In 2nd International Symposium on Numerical Models in Geomechanic, Ghent, pp. 131–149 (1986)

  38. Pastor M., Zienkiewicz O.C., Leung K.H.: Simple model for transient soil loading in earthquake analysis. II: non-associative models for sands. Int. J. Numer. Anal. Meth. Geomech. 9, 477–498 (1985)

    Article  MATH  Google Scholar 

  39. Pastor M., Zienkiewicz O.C., Chan A.H.C.: Generalized plasticity and the modelling of soil behaviour. Int. J. Numer. Anal. Meth. Geomech. 14, 151–190 (1990)

    Article  MATH  Google Scholar 

  40. Pastor M., Quecedo M., Merodo J.A.F., Herreros M.I., Gonzalez E., Mira P.: Modelling tailings dams and mine waste dumps failures. Géotechnique 52(8), 579–591 (2002)

    Google Scholar 

  41. Pastor M., Quecedo M., González E., Herreros I, Fernández Merodo J.A., Mira P.: Modelling of landslides: (II) propagation. In: Darve, F., Vardoulakis , I. (eds) Degradations and Instabilities in Geomaterials, pp. 319–367. Springer Wien, New York (2004)

    Google Scholar 

  42. Pastor, M., Blanc, T., Pastor, M.J.: A depth integrated viscoplastic model for dilatant saturated cohesive-frictional fluidized mixtures: application to fast catastrophic landslides. J. Non-Newtonian Fluid Mech. (in press, 2009)

  43. Pastor M., Haddad B., Sorbino G., Cuomo S., Drempetic V.: A depth integrated coupled SPH model for flow-like landslides and related phenomena. Int. J. Numer. Anal. Meth. Geomech. 33(2), 143–172 (2009)

    Article  Google Scholar 

  44. Quecedo M., Pastor M., Herreros I.: Numerical modelling of impulse wave generated by fast landslides. Int. J. Numer. Meth. Eng. 59, 1633–1656 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  45. Roscoe K.H., Poorooshasb H.B.: A fundamental principle of similarity in model tests for earth pressure problems. Conf. Asiatique Mécanique des Sols 1, 134–140 (1963)

    Google Scholar 

  46. Sassa, K., Fukuoka, H., Wang, G.: Activities of APERIF: areal prediction of earthquake and rain induced rapid and long travelling flow phenomena. In: Fukuoka, H. (ed.) Proceedings of the Kansai Branch Symposium, Japan Landslide Society, ISBN 4-9900618-9-6 C3051, pp. 61–78 (in Japanese) (2002)

  47. Savage S.B., Hutter K.: The dynamics of avalanches of granular materials from initiation to runout. Part I: analysis. Acta Mech. 86, 201–223 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  48. Schneider, L., Hutter, K.: Solid-Fluid Mixtures of Frictional Materials in Geophysical Context Based on a Concise Thermodynamic Analysis. Advances in geophysical and environmental mechanics and mathematics series, Springer, New York (2009, to appear)

  49. Seed H.B., Lee K.H.: Undained strength characteristics of cohesionless soils. J. Soil Mech. Found. Div. Proc. ASCE 93(6), 333–360 (1967)

    Google Scholar 

  50. Sivakumar, V.: A critical state framework for unsaturated soil. Ph.D. thesis Department of Civil and Structural Engineering, University of Sheffield (1993)

  51. Spencer A.J.M.: Continuum Mechanics. Longman, London (1980)

    MATH  Google Scholar 

  52. Tamagnini R.: An extended Cam-Clay model for unsaturated soils with hydraulic hysteresis. Géotechnique 54(2), 223–228 (2004)

    Google Scholar 

  53. Tamagnini R., Pastor M.: A thermodynamically based model for unsaturated soils: a new framework for generalized plasticity. In: Mancuso, (eds) 2nd International Workshop on Unsaturated Soils, pp. 1–14. Naples, Italy (2004)

    Google Scholar 

  54. Uriel, A.O.: Discussion to spec. session 2, problems of non linear soil mechanics. In: Proceedings of the 8th International Conference Soil Mechanics Foundation Engineering Moscow, vol. 4.3, pp. 78–80 (1973)

  55. Uriel, A.O., Merino, M.: Harmonic response of sands in shear. In: Third International Conference on Numerical Methods Geomechanics pp. 2–6, Aachen (1979)

  56. Voellmy A.: Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73, 212–285 (1955)

    Google Scholar 

  57. Wan R.G., Guo P.J.: A simple constitutive model for granular soils: modified stress-dilatancy approach. Comput. Geotech. 22(2), 109–133 (1998)

    Article  Google Scholar 

  58. Wroth C.P., Bassett N.: A stress-strain relationship for the shearing behaviour of sand. Géotechnique 15, 32–56 (1965)

    Article  Google Scholar 

  59. Zienkiewicz O.C., Mroz Z.: Generalized plasticity formulation and applications to geomechanics. In: Desai, C.S., Gallagher, R.H. (eds) Mechanics of Engineering Materials, pp. 655–679. John Wiley, Sons (1984)

    Google Scholar 

  60. Zienkiewicz O.C., Shiomi T.: Dynamic behaviour of saturated porous-media - The generalized Biot formulation and its numerical solution. Int. J. Numer. Anal. Meth. Geomech. 8(1), 71–96 (1984)

    Article  MATH  Google Scholar 

  61. Zienkiewicz O.C., Chang C.T., Bettess P.: Drained, undrained, consolidating and dynamic behaviour assumptions in soils. Géotechnique 30(4), 385–395 (1980)

    Article  Google Scholar 

  62. Zienkiewicz O.C., Leung K.H., Pastor M.: Simple model for transient soil loading in earthquake analysis. I: basic model and its application. Int. J. Numer. Anal. Meth. Geomech. 9, 453–476 (1985)

    Article  MATH  Google Scholar 

  63. Zienkiewicz O.C., Chan A.H.C., Pastor M., Schrefler B.A., Shiomi T.: Computational geomechanics. John Wiley, Sons (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pastor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastor, M., Manzanal, D., Fernández Merodo, J.A. et al. From solids to fluidized soils: diffuse failure mechanisms in geostructures with applications to fast catastrophic landslides. Granular Matter 12, 211–228 (2010). https://doi.org/10.1007/s10035-009-0152-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-009-0152-4

Keywords

Navigation