Skip to main content
Log in

Exact solutions of conformable time fractional Zoomeron equation via IBSEFM

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

The nonlinear conformable time-fractional Zoomeron equation is an important model to describe the evolution of a single scalar field. In this paper, new exact solutions of conformable time-fractional Zoomeron equation are constructed using the Improved Bernoulli Sub-Equation Function Method (IBSEFM). According to the parameters, 3D and 2D figures of the solutions are plotted by the aid of Mathematics software. The results show that IBSEFM is an efficient mathematical tool to solve nonlinear conformable time-fractional equations arising in mathematical physics and nonlinear optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R Abazari. The solitary wave solutions of Zoomeron equation, Appl Math, 2011, 59(5): 2943–2949.

    MathSciNet  MATH  Google Scholar 

  2. T Abdeljawad. On conformable fractional calculus, J Comput Appl Math, 2015, 279: 57–66.

    Article  MathSciNet  Google Scholar 

  3. A Akbulut, M Kaplan. Auxiliary equation method for time-fractional differential equations with conformable derivative, Comput Math Appl, 2018, 75: 876–882.

    Article  MathSciNet  Google Scholar 

  4. V Ala, U Demirbilek, K Mamedov. An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional SRLW equation, AIMS Mathematics, 2020, 5(4): 3751–3761.

    Article  MathSciNet  Google Scholar 

  5. A T Ali, E R Hassan. General Expa-function method for nonlinear evolution equations, Applied Mathematics and Computation, 2010, 217: 451–459.

    Article  MathSciNet  Google Scholar 

  6. M Alquran, K Al-Khaled. Mathematical methods for a reliable treatment of the (2+1)- dimensional Zoomeron equation, Math Sci, 2012, 6(11), https://doi.org/10.1186/2251-7456-6-11.

  7. A Atangana, D Baleanu, A Alsaedi. New properties of conformable derivative, Open Math, 2015, 13: 1–10.

    Article  MathSciNet  Google Scholar 

  8. Z Bin. Exp-function method for solving fractional partial differential equations, The Sci World J, 2013, 2013: 1–8.

    Google Scholar 

  9. H Bulut, G Yel, H M Baskonuş. An Application of Improved Bernoulli Sub-Equation Function Method to The Nonlinear Time-Fractional Burgers Equation, Turk J Math Comput Sci, 2016, 5: 1–7.

    Google Scholar 

  10. W Chen. Nonlinear dynamics and chaos in a fractional-order financial system, Chaos, Solitons and Fractals, 2008, 36(5): 14305–1314.

    Google Scholar 

  11. F Duşunceli, E Çelik, M Aşkin, H Bulut. New exact solutions for the doubly dispersive equation using the improved Bernoulli sub-equation function method, Indian J Phys, 2021, 95 (2): 309–314.

    Article  Google Scholar 

  12. A Emad, B Abdel-Salam, A Y Eltayeb. Solution of nonlinear space-time fractional differential equations using the fractional Riccati expansion method, Math Probl Eng, 2013, 2013: 1–6.

    MathSciNet  MATH  Google Scholar 

  13. Y Ferdi. Some applications of fractional order calculus to design digital filters for biomedical signal processing, Journal of Mechanics in Medicine and Biology, 2012, 12(2), https://doi.org/10.112/S0219519412400088.

  14. K Hosseini, R Ansari. New exact solutions of nonlinear conformable time fractional Boussinesq equations using the modified Kudryashov method, Waves Random Complex Media, 2017, 27: 628–636.

    Article  MathSciNet  Google Scholar 

  15. K Hosseini, M Mirzazadeh, J F G Aguilar. Soliton solutions of the Sasa-Satsuma equation in the monomode optical fibers including the beta-derivatives, Optik, 2020, 224: 165425.

    Article  Google Scholar 

  16. K Hosseini, M Mirzazadeh, J Vahidi, R Asghari. Optical wave structures to the Fokas-Lenells equation, Optik, 2020, 207: 164450.

    Article  Google Scholar 

  17. K Hosseini, M S Osman, M Mirzazadeh, F Rabiei. Investigation of different wave structures to the generalized third order nonlinear Schrodinger equation, Optik, 2020, 206: 164259.

    Article  Google Scholar 

  18. M E Islam, M A Akbar. Stable wave solutions to the Landau-Ginzburg-Higgs equation and the modified equal width wave equation using the IBSEF method, Arab Journal of Basic and Applied Sciences, 2020, 27 (1): 270–278.

    Article  Google Scholar 

  19. R Khalil, M Al Horani, A Yousef, M Sababheh. A new definition of fractional derivative, J Comput Appl Math, 2014, 264: 65–70.

    Article  MathSciNet  Google Scholar 

  20. N A Kudryashov. Method for finding highly dispersive optical solitons of nonlinear differential equations, Optik, 2020, 206: 163550.

    Article  Google Scholar 

  21. D Kumar, M Kaplan. New analytical solutions of (2+1)- dimensional conformable time fractional Zoomeron equation via two distinct techniques, Chinese J Phys, 2018, 53: 2173–2185.

    Article  MathSciNet  Google Scholar 

  22. Z Li, T Han. Bifurcation and exact solutions for the (2+1)-dimensional conformable time-fractional Zoomeron equation, Advances in Difference Equations, 2020, 2020: 656, https://doi.org/10.1186/s13662-020-03119-5.

    Article  MathSciNet  Google Scholar 

  23. W Liu, K Chen. The functional variable method for finding exact solutions of some nonlinear time fractional differential equations, Pramana, 2013, 81: 377–384.

    Article  Google Scholar 

  24. M Odabaşi. Traveling wave solutions of conformable time fractional Zakharov-Kuznetsov and Zoomeron equations, Chinese J Phys, 2020, 64: 194–202.

    Article  MathSciNet  Google Scholar 

  25. M Odabaşi, E Misirli. On the solutions of the nonlinear fractional differential equations via the modified trial equation method, Mathematical Methods in the Applied Sciences, 2018, 41: 904–911.

    Article  MathSciNet  Google Scholar 

  26. Z Odibat, S Momani. The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics, Comput Math Appl, 2009, 58: 2199–2208.

    Article  MathSciNet  Google Scholar 

  27. H Rezazadeh, D Kumar, T A Soulaiman, H Bulut. New complex hyperbolic and trigonometric solutions for the generalized conformable fractional Gardner equation, Modern Physics Letters, 2019, 33(17), https://doi.org/10.1142/S0217984919501963.

  28. H Rezazadeh, A Korkmaz, M Eslami, J Vahidi, R Ashgari. Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method, Opt Quant Electron, 2018, 50(150), https://doi.org/10.1007/s11082-018-1416-1.

  29. M Şenol. New analytical solutions of fractional symmetric regularized-long-wave equation, Revista Mexicana de Fisica, 2020, 66(3): 297–307.

    Article  MathSciNet  Google Scholar 

  30. N Shang, B Zheng. Exact solutions for three fractional partial differential equations by the (G/G) method, Inter Journal of Appl Math, 2013, 43(3).

  31. M Topsakal, F Taşcan. Exact Travelling Wave Solutions for Space-Time Fractional KleinGordon Equation and (2+1)-Dimensional Time-Fractional Zoomeron Equation via Auxiliary Equation Method, Applied Mathematics and Nonlinear Sciences, 2020, 5(1):437–446.

    Article  MathSciNet  Google Scholar 

  32. A Tozar, A Kurt, O Taşbozan. New Wave Solutions of Time Fractional Integrable Dispersive Wave Equation Arising in Ocean Engineering Models, Kuwait J Sci, 2020, 47(2): 22–33.

    MathSciNet  MATH  Google Scholar 

  33. H Xu. Analytical approximations for a population growth model with fractional order, Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5): 1978–1983.

    Article  Google Scholar 

  34. G Yel, H M Başkonuş. Solitons in conformable time-fractional Wu-Zhang system arising in coastal design, Pramana, 2019, 93, https://doi.org/10.1007/s12043-019-1818-z.

  35. G Yel. On the new travelling wave solution of a neural communication model, Journal of Balikesir University Institute of Science and Technology, 2019, 21(2): 666–678.

    Google Scholar 

  36. B Zheng, C Wen. Exact solutions for fractional partial differential equations by a new fractional sub-equation method, Advances in Difference Equations, 2013, 199.

  37. V Ala, U Demirbilek, K Mamedov. On the Exact Solutions to Conformable Equal width Wave Equation by Improved Bernoulli Sub-Equation Function Method, Bulletin of South Ural Univ, Series Math, Mech, Phys, 2021, 13(3).

  38. U Demirbilek, V Ala, K Mamedov. An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional equation, Tbilisi Math J, 2021, 14(3): 59–70.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ulviye Demirbilek, Volkan Ala or Khanlar R. Mamedov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirbilek, U., Ala, V. & Mamedov, K.R. Exact solutions of conformable time fractional Zoomeron equation via IBSEFM. Appl. Math. J. Chin. Univ. 36, 554–563 (2021). https://doi.org/10.1007/s11766-021-4145-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-021-4145-3

MR Subject Classification

Keywords

Navigation