Skip to main content
Log in

Enzyme-Catalyzed modification of oilseed materials to produce eco-friendly products

  • Review
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Novel products produced from seed oil materials (TAG, phospholipids, and minor components such as tocopherols, sterols, stanols, and fatty acyl esters of the latter two) by enzyme-mediated purification or chemical modification are reviewed. The primary focus is on “value-added products” of current and potential use (particularly in the food, cosmetics, and pharmaceutical industries) that require the selectivity of enzymes and mild operating conditions, the latter being beneficial for polyunsaturated and oxygenated acyl groups. The paper briefly reviews the biochemistry of enzymes in lipid modification (lipases, phospholipases, and lipoxygenases) and discusses and assesses the current and future applications, current state of the art, and areas for future research for the following enzyme-mediated processes: isolation of polyunsaturated and oxygenated FFA; formation of structured TAG as nutraceuticals; formation of MAG, saccharide-FA esters, and other polyhydric alcohol ester as emulsifiers and surfactants; isolation and/or modification of tocopherols and sterols as antioxidants; formation of hydroperoxides as chemical intermediates; and modification of phospholipids for use in liposomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lie Ken Jie, M.S.F., and M.K. Rasha, Fatty Acids, Fatty Acid Analogs and Their Derivatives, Nat. Prod. Rep. 15:607–629 (1998).

    Article  CAS  Google Scholar 

  2. Biermann, U., W. Friedt, S. Lang, W. Luhs, G. Machmuller, J.O. Metzger, M. Rüsch gen. Klaas, H.J. Schafer, and M.P. Schneider, New Syntheses with Oils and Fats as Renewable Raw Materials for the Chemical Industry, Angew. Chem. Int. Ed. Engl. 39:2206–2224 (2000).

    Article  CAS  Google Scholar 

  3. Knight, D.W., Carboxylic Acids and Derivatives, Gen. Synth. Methods 14:63–137 (1992).

    CAS  Google Scholar 

  4. Honydonckx, H.E., D.E. De Vos, S.A. Chavan, and P.A. Jacobs, Esterification and Transesterification of Renewable Chemicals, Top. Catal. 27:83–96 (2004).

    Article  Google Scholar 

  5. Biondioli, P., The Preparation of Fatty Acid Esters by Means of Catalytic Reactions, 27:77–82 (2004).

    Article  Google Scholar 

  6. Khan, G.R., S. Waheed, S.A. Khan, C.M. Ashraf, and F. Scheinmann, Synthesis of Naturally Occurring Polyunsaturated Fatty Acids, Sci. Int. 13:41–47 (2001).

    CAS  Google Scholar 

  7. Mukherjee, K.D., Lipase-Catalyzed Reactions for Modification of Fats and Other Lipids, Biocatalysis 3:277–293 (1990).

    CAS  Google Scholar 

  8. Eigtved, P., Enzymes and Lipid Modification, in Advances in Applied Lipid Research, Vol. 1, edited by F.B. Padley, JAI Press, London, 1992, pp. 1–64.

    Google Scholar 

  9. Adlercreutz, P., Enzyme-Catalyzed Lipid Modification, Biotechnol. Genetic Eng. Rev. 12:231–254 (1994).

    CAS  Google Scholar 

  10. McNeill, G.P., Enzymic Processes, in Lipid Synthesis and Manufacture, edited by F.D. Gunstone, CRC Press, Boca Raton, FL, 1999, pp. 288–320.

    Google Scholar 

  11. Gunstone, F.D., Enzymes as Biocatalysts in the Modification of Natural Lipids, J. Sci. Food. Agric. 79:1535–1549 (1999).

    Article  CAS  Google Scholar 

  12. Bornscheuer, U.T., (ed.), Enzymes in Lipid Modification, Wiley-VCH, Weinheim, Germany, 2000.

    Google Scholar 

  13. Kuo, T.M., and H.W. Gardner, Lipid Biotechnology, Marcel-Dekker, New York, 2002.

    Google Scholar 

  14. Bornscheuer, U.T., Insights into Lipid Biotransformation, Eur. J. Lipid Sci. Technol. 105:561 (2003).

    Article  CAS  Google Scholar 

  15. Halling, P., Enzymic Conversions in Organic and Other Low-Water Media, in Enzyme Catalysis in Organic Synthesis, 2nd edn., edited by K. Drauz, and H. Waldmann Wiley-VCH, Weinheim, Germany, 2002, pp. 259–285.

    Google Scholar 

  16. Hayes, D.G., How to Employ Proteins in Non-aqueous Environments, in Modern Protein Chemistry: Practical Aspects, edited by G.C., Howard, and W.E. Brown, Boca Raton, FL, 2000, pp. 179–225.

  17. Hari Krishna, S., Developments and Trends in Enzyme Catalysis in Nonconventional Media, Biotechnol. Adv. 20:239–266 (2002).

    Article  CAS  Google Scholar 

  18. Hari Krishna, S., and N.G. Karanth, Lipases and Lipase-Catalyzed Esterification Reactions in Nonaqueous Media, Catal. Rev. Sci. Eng. 44:499–591 (2002).

    Article  CAS  Google Scholar 

  19. Carrea, G., and S. Riva, Properties and Synthetic Applications of Enzymes in Organic Solvents, Angew. Chem., Int. Ed. Engl. 39:2226–2254 (2000).

    Article  CAS  Google Scholar 

  20. Villeneuve, P., and T.A. Foglia, Lipase Specificities: Potential Application in Lipid Bioconversions, INFORM 8:640–651 (1997).

    Google Scholar 

  21. Ransac, S., F. Carriere, E. Rogalska, R. Verger, F. Marguet, G. Buono, E.P. Melo, J.M.S. Cabral, M.-P.E. Egloff, H. van Tilbeurgh, and C. Cambillau, The Kinetics, Specificities and Structural Features of Lipases, in Engineering of/with Lipases, edited by F.X. Malcata, Kluwer Academic, Dordrecht, The Netherlands, 1996, pp. 143–182.

    Google Scholar 

  22. Jensen, R.G., and M. Hamosh, Selectivity of Lipases: Types and Determination, in Engineering of/with Lipases, edited by F.X. Malcata, Kluwer Academic, Dordrecht, The Netherlands, 1996, pp. 17–29.

    Google Scholar 

  23. Ducret, A., M. Trani, and R. Lortie, Lipase-Catalyzed Enantioselective Esterification of Ibuprofen in Organic Solvents Under Controlled Water Activity, Enzyme Microb. Technol. 22:212–216 (1998).

    Article  CAS  Google Scholar 

  24. Williams, J.M.J., R.J. Parker, and C. Neri, Enzymatic Kinetic Resolution, in Enzyme Catalysis in Organic Synthesis, 2nd edn., edited by K. Drauz and H. Waldmann, Wiley-VCH, Weinheim, Germany, 2002, pp. 287–312.

    Google Scholar 

  25. Santaniello, E., P. Ferraboschi, and P. Grisenti, Lipase-Catalyzed Transesterification in Organic Solvents: Applications to the Preparation of Enantiomerically Pure Compounds, Enzyme Microb. Technol. 15:367–382 (1993).

    Article  CAS  Google Scholar 

  26. Margolin, A.L., Enzymes in the Synthesis of Chiral Drugs, 15:266–280 (1993).

    Article  CAS  Google Scholar 

  27. Patel, R.N., Use of Lipases in Stereoselective Catalysis and Preparation of Some Chiral Drug Intermediates, in Recent Research Developments in Oil Chemistry, Vol. 2, anonymous editor, Transworld Research Network, Trivandrum, India, 1997, pp. 187–211.

    Google Scholar 

  28. Patel, R.N., Enzymatic Preparation of Chiral Pharmaceutical Intermediates by Lipases, in Lipid Biotechnology, edited by T.M. Kuo, and H.W. Gardner, Marcel Dekker, New York, 2002, pp. 527–561.

    Google Scholar 

  29. Torres, C., B. Lin, and C.G. Hill, Jr., Lipase-Catalyzed Glycerolysis of an Oil Rich in Eicosapentaenoic Acid Residues, Biotechnol. Lett. 24:667–673 (2002).

    Article  CAS  Google Scholar 

  30. Hansen, T.T., and P. Eigtved, A New Immobilized Lipase for Interesterification and Ester Synthesis, in World Conference on Emerging Technologies in the Fats and Oils Industry, edited by A.R. Baldwin, American Oil Chemists' Society, Champaign, IL, 1986, pp. 365–369.

    Google Scholar 

  31. Pedersen, S., A.M. Larsen, and P. Aasmul, Large-Scale Preparation of a Water-Soluble Enzyme Immobilized in an Anhydrous Environment for Use in Non-aqueous Conditions, WO Patent 95-22,606 (1995).

  32. Xu, X., T. Porsgaard, H. Zhang, J. Adler-Nissen, and C.-E. Høy, Production of Structured Lipids in a Packed-Bed Reactor with Thermomyces lanuginosa Lipase, J. Am. Oil Chem. Soc. 79:561–565 (2002).

    CAS  Google Scholar 

  33. Zhang, H., X. Xu, J. Nilsson, H. Mu, J. Adler-Nissen, and C.-E. Hoy, Production of Margarine Fats by Enzymatic Interesterification with Silica-Granulated Thermomyces lanuginosa Lipase in a Large-Scale Study, 78:57–64 (2001).

    CAS  Google Scholar 

  34. Heldt-Hansen, H.P., M. Ishii, S.A. Patkar, T.T. Hansen, and P. Eigtved, A New Immobilized Positional Nonspecific Lipase for Fat Modification and Ester Synthesis, in Biocatalysis in Agricultural Biotechnology (ACS. Symposium Series, 389), edited by J.R. Whitaker, and P.E. Sonnet, American Chemical Society, Washington, DC, 1989, pp. 158–172.

    Google Scholar 

  35. Jaeger, K.E., B.W. Dijkstra, and M.T. Reetz, Bacterial Biocatalysts: Molecular Biology, Three-Dimensional Structures, and Biotechnological Applications of Lipases, Ann. Rev. Microbiol. 53:315–351 (1999).

    Article  CAS  Google Scholar 

  36. Jaeger, K.-E., S. Ransac, B.W. Dijkstra, C. Colson, M. van Heuvel, and O. Misset, Bacterial Lipases, FEMS Microbiol. Rev. 15:29–63 (1994).

    Article  CAS  Google Scholar 

  37. Demirjian, D.C., F. Moris-Varas, and C.S. Cassidy, Enzymes from Extremophiles, Curr. Opin. Chem. Biol. 5:144–151 (2001).

    Article  CAS  Google Scholar 

  38. Sharma, R., Y. Chisti, and U.C. Banerjee, Production, Purification, Characterization, and Applications of Lipases, Biotechnol. Adv. 19:627–662 (2001).

    Article  CAS  Google Scholar 

  39. Mukherjee, K.D., Plant Lipases as Biocatalysts, in Lipid Biotechnology, edited by T.M. Kuo, and H.W. Gardner, Marcel Dekker, New York, 2002, pp. 399–415.

    Google Scholar 

  40. May, O., C.A. Voigt, and F.H. Arnold, Enzyme Engineering by Directed Evolution, in Enzyme Catalysis in Organic Synthesis, 2nd edn., edited by K. Drauz, and H. Waldmann, Wiley-VCH, Weinheim, Germany, 2002, pp. 95–138.

    Google Scholar 

  41. Derewenda, Z.S., Structure and Function of Lipases, in Advances in Protein Chemistry, Vol. 45, edited by V.N. Schumaker, 1994, pp. 1–52.

  42. Marangoni, A.G., Lipases: Structure, Function, and Properties, in Lipid Biotechnology, edited by T.M. Kuo, and H.W. Gardner, Marcel Dekker, New York, 2002, pp. 357–386.

    Google Scholar 

  43. Feussner, I., and H. Kühn, Application of Lipoxygenases and Related Enzymes for the Preparation of Oxygenated Lipids, in Enzymes in Lipid Modification, edited by U.T. Bornscheuer, Wiley-VCH, Weinheim, Germany, 2000, pp. 309–336.

    Google Scholar 

  44. Pan, B.S., and J.-M. Kuo, Lipoxygenases, Food Sci. Technol. 97:317–336 (2000).

    CAS  Google Scholar 

  45. Brash, A.R., Lipoxygenases: Occurrence, Functions, Catalysis, and Acquisition of Sustrate, J. Biol. Chem. 274:23679–23682 (1999).

    Article  CAS  Google Scholar 

  46. Prigge, S.T., J.C. Boyington, M. Faig, K.S. Doctor, B.J. Gaffney, and L.M. Amzel, Structure and Mechanism of Lipoxygenases, Biochemie 79:629–636 (1997).

    Article  CAS  Google Scholar 

  47. Iacazio, G., and D. Martini-Iacazio, Properties and Applications of Lipoxygenases, in Enzymes in Lipid Modification, edited by U.T. Bornscheuer, Wiley-VCH, Weinheim, Germany, 2000, pp. 337–359.

    Chapter  Google Scholar 

  48. Kermasha, S., N. Dioum, B. Bisakowski, and M. Vega, Biocatalysis by Immobilized Lipoxygenase in a Ternary Micellar System, J. Mol. Catal. B. Enzymat. 19–20:305–317 (2002).

    Article  Google Scholar 

  49. Hsu, A.-F., T.A. Foglia, and G.J. Piazza, Immobilization of Lipoxygenase in an Alginate-Silicate Solgel Matrix: Formation of Fatty Acid Hydroperoxides, Biotechnol. Lett. 19:71–74 (1997).

    Article  CAS  Google Scholar 

  50. Hsu, A.-F., K. Jones, W.N. Marmer, and T.A. Foglia, Production of Alkyl Esters from Tallow and Grease Using Lipase Immobilized in a Phyllosilicate Sol-Gel, J. Am. Oil Chem. Soc. 78:585–588 (2001).

    CAS  Google Scholar 

  51. Hsu, A.-F., S. Shen, E. Wu, and T.A. Foglia, Characterization of Soybean Lipoxygenase Immobilized in Cross-Linked Phylosilicates, Biotechnol. Appl. Biochem. 28:55–59 (1998).

    CAS  Google Scholar 

  52. Hsu, A.-F., E. Wu, T.A. Foglia, and G.J. Piazza, Kinetic Behavior of Soybean Lipoxygenase: A Comparative Study of the Free Enzyme and The Enzyme Immobilized in an Alginate Silica Sol-Gel Matrix, J. Food. Biochem. 24:21–31 (2000).

    CAS  Google Scholar 

  53. Ulbrich-Hofmann, R., Phospholipases Used in Lipid Transformations, in Enzymes in Lipid Modification, edited by U.T. Bornscheuer, Wiley-VCH, Weinheim, Germany, 2000, pp. 219–262.

    Google Scholar 

  54. Servi, S., Phospholipases as Synthetic Catalysts, Top. Curr. Chem. 200:127–158 (1999).

    CAS  Google Scholar 

  55. Grunwald, P., Preparation and Application of Immobilized Phospholipases, in Enzymes in Lipid Modification, edited by U.T. Bornscheuer, Wiley-VCH, Weinheim, Germany, 2000, pp. 263–291.

    Chapter  Google Scholar 

  56. Gill, I., and R. Valivety, Polyunsaturated Fatty Acids, Part 1: Occurrence, Biological Activities and Applications, Trends Biotechnol. 15:401–409 (1997).

    Article  CAS  Google Scholar 

  57. Hoffman, D.R., E.E. Birch, J.A. Boettcher, and D.A. Schade, Use of Docosahexaenoic Acid and Arachidonic Acid to Enhance the Visual Development of Term Infants Breast-Fed up to the Age of Six Months, WO Patent 2004-048,926 (2004).

  58. Llewellyn, W.C., Use of Arachidonic Acid as a Method of Increasing Skeletal Muscle Mass, WO Patent 2004-102,519 (2004).

  59. Hansen, J.W., K.H. Knauff, and D.A. Schade, Method to Reduce the Incidence of Intraventricular Hemorrhage in Preterm Infants, U.S. Patent 6753350 (2004).

  60. Akimoto, K., and Y. Koga, Compositions Containing Arachidonic Acid or Derivatives for Enhancement of Normal Responses of Cognitive Abilities of Healthy Humans, WO Patent 2004-028,529 (2004).

  61. Samuelsson, J., and M. Johansson, Oxidation of FA with Alkene or Alkyne Functionalities Studied with Chemiluminescence and Real-Time IR Spectroscopy, J. Am. Oil Chem. Soc. 80:491–496 (2003).

    CAS  Google Scholar 

  62. Samuelsson, J., and M. Johansson, A study of Fatty Acid Methyl Esters with Epoxy or Alkyne Functionalities, 78:1191–1196 (2001).

    CAS  Google Scholar 

  63. Muuse, B.G., F.P. Cuperus, and J.T.P. Derksen, Composition and Physical Properties of Oils from New Oilseed Crops, Ind. Crops Prod. 1:57–65 (1992).

    Article  CAS  Google Scholar 

  64. Larsson, S.C., M. Kumlin, M. Ingelman-Sundberg, and A. Wolk, Dietary Long-Chain n−3 Fatty Acids for the Prevention of Cancer: A Review of Potential Mechanisms, Am. J. Clin. Nutr. 79:935–945 (2004).

    CAS  Google Scholar 

  65. McColl, J., Health Benefits of Omega-3 Fatty Acids, NutraCos 2:35–40 (2003).

    CAS  Google Scholar 

  66. Li, D., O. Bode, H. Drummond, and A.J. Sinclair, Omega-3 (n−3) Fatty Acids, in Lipids for Functional Foods and Nutraceuticals, edited by F.D. Gunstone, Oily Press Lipid Library, Bridgwater, UK, 2003, pp. 225–262.

    Google Scholar 

  67. Leonard, E.C., High-Erucic Vegetable Oils, Ind. Crops Prod. 1:119–123 (1992).

    Article  CAS  Google Scholar 

  68. Oyamada, T., Heat-Developable Photographic Film Containing Controlled Amount of Silver Behenate and Erucic Acid, WO Patent 2004-085, 661 (2004).

  69. Noguchi, Y., J. Oki, and M. Shakado, Esterification Product and Cosmetic Preparation Containing the Same, WO 2004-002,438 (2004).

  70. Zilberberg, M.D., C. Levine, E. Komaroff, M. Guldin, M.J. Gordon, and S.D. Ross, Clinical Uses of γ-Linolenic Acid: A Systematic Review of the Literature, in γ-Linolenic Acid: Recent Advances in Biotechnology and Clinical Applications, edited by Y.S. Huang and V.A. Ziboh, AOCS Press, Champaign, IL, 2001, pp. 90–104.

    Google Scholar 

  71. Garmier, W.W., Biodegradable Lubricant Composition from Triglycerides and Oil Soluble Antimony, U.S. Patent 5,990,055 (1999).

  72. Thames, S.F., and H. Yu, Synthesis, Characterization, and Application of Lesquerella Oil and Its Derivatives in Water-Reducible Coatings, J. Coating Technol. 68:63–67 (1996).

    CAS  Google Scholar 

  73. Deguchi, F., Cosmetics Containing Lesquerella Oil or Its Fatty Acids, Japanese Patent 06,227,939 (1994).

  74. Dierig, D.A., A.E. Thompson, and F.S. Nakayama, Lesquerella Commercialization Efforts in the United States Ind. Crops Prod. 1:289–293 (1992).

    Article  CAS  Google Scholar 

  75. Giordano, J.A., and C. Balzer, Compositions and Methods for Nutrition Supplementation, U.S. Patent 2004-0,109,901 (2004).

  76. Hebert, R.F., Water-Soluble Stable Petroselinic Acid Dextran Salt, U.S. Patent 2003-228,378 (2003).

  77. Barrett, K.E., M.R. Green, H.-L. Hu, P. Parmar, J.R. Powell, and A.V. Rawlings, Skin Care Composition Containing Petroselinic Acid and Phenols, WO Patent 2001-008,651 (2001).

  78. Alaluf, S., K.E. Barrett, A.M. Brinker, F.W. Cain, M.R. Green, H.-L. Hu, K. Iwata, T.E. Januario, K.A. Ottey, L.R. Palanker, et al., Petroselinic Acid-Containing Cosmetics for Treating Skin, WO Patent 99-47,110 (1999).

  79. Malnoe, A., M. Baur, and L. Fay, Use of Petroselinic Acid for the Treatment of Inflammation of Superficial Tissues, European Patent 888, 773 (1999).

    Google Scholar 

  80. Laugier, J.-P., and E. Picard, Cosmetics Containing an Oil Rich in Petroselinic Acid as Hydrating Agent, European Patent 709,084 (1996).

    Google Scholar 

  81. Takeoka, E., C. Hamada, J. Suzuki, Y. Nakazawa, T. Souma, M. Ogou, and M. Tajima, Hair Growth Phase Extender Composition, European Patent 867,169 (1998).

    Google Scholar 

  82. Heidbreder, A., R. Hofer, R. Grutzmacher, A. Westfechtel, and C.W. Blewett, Oleochemical Products as Building Blocks for Polymers, Fett/Lipid 101:418–424 (1999).

    Article  CAS  Google Scholar 

  83. Schwitzer, M.K., Castor Oil, in Proceedings World Conference on Oleochemicals: Into the 21st Century, edited by T.H. Applewhite, AOCS Press, Champaign, IL, 1991, pp. 111–118.

    Google Scholar 

  84. Gaginella, T.S., F. Capasso, N. Mascolo, and S. Perilli, Castor Oil: New Lessions from an Ancient Oil, Phytotherapy Res. 12:S128-S130 (1998).

    Article  CAS  Google Scholar 

  85. Perdue, R.E., Jr., K.D. Carlson, and M.G. Gilbert, Vernonia galamensis, Potential New Crop Source of Epoxy Acid, Econ. Botany 40:54–68 (1986).

    CAS  Google Scholar 

  86. Carlson, K.D., W.J. Schneider, S.P. Chang, and L.H. Princen, Vernonia galamensis Seed Oil: A New Source for Epoxy Coatings, in New Sources of Fats and Oils, edited by E.H. Pryde, L.H. Princen, and K.D. Mukherjee, AOCS Press, Champaign, IL, 1981, pp. 297–318.

    Google Scholar 

  87. Ayorinde, F.O., G. Osman, R.L. Shepard, and F.T. Powers, Synthesis of Azelaic Acid and Suberic Acid from Vernonia galamensis Oil, J. Am. Oil Chem. Soc. 65:1774–1777 (1988).

    CAS  Google Scholar 

  88. Russell-Jones, G.J., Systems for Oral Delivery, WO Patent 2000-022,909 (2000).

  89. Zeinalov, E.B., G. Kossmehl, and R.R.K. Kimwomi, Synthesis and Reactivity of Antioxidants Based on Vernolic Acid and 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic Acid, Angew. Makromol. Chem. 260:77–81 (1998).

    Article  CAS  Google Scholar 

  90. Ayorinde, F.O., E.Y. Nana, P.D. Nicely, A.S. Woods, E.O. Price, and C.P. Nwaonicha, Syntheses of 12-Aminododecanoic and 11-Aminoundecanoic Acids from Vernolic Acid, J. Am. Oil Chem. Soc. 74:531–538 (1997).

    CAS  Google Scholar 

  91. Grinberg, S., V. Kolot, and D. Mills, New Chemical Derivatives Based on Vernonia galamensis Oil, Ind. Crops Prod. 3:113–119 (1994).

    Article  CAS  Google Scholar 

  92. Singh, C., N. Kapur, and B.L. Kaul, Vernonia galamensis (Cass) Oil—A Potential New Resource of Epoxidized Triglyceride Oil, Res. Ind. 38:152–153 (1993).

    CAS  Google Scholar 

  93. Ayorinde, F.O., F.T. Powers, L.D. Streete, R.L. Shepard, and D.N. Tabi, Synthesis of Dodecanedioic Acid from Vernomia galamensis Oil, J. Am. Oil Chem. Soc. 66:690–692 (1989).

    CAS  Google Scholar 

  94. Berdeaux, O., W.W. Christie, F.D. Gunstone, and J.-L. Sébédio, Large-Scale Synthesis of Methyl cis-9,trans-11-Octadecadienoate from Methyl Ricinoleate, 74:1011–1015 (1997).

    CAS  Google Scholar 

  95. Cawood, P., D.G. Wickens, S.A. Iversen, J.M. Braganza, and T.C. Dormandy, The Nature of Diene Conjugation in Human Serum, Bile, and Duodenal Juice, FEBS Lett. 59:280–283 (1983).

    Google Scholar 

  96. Saebo, A., C. Skarie, D. Jerome, and G. Haroldsson, Conjugated Linoleic Acid Compositions and Their Manufacture from Oilseed Oils, U.S. Patent 6,410,761 (2002).

  97. Reaney, M.J.T., Method for Commercial Preparation of Conjugated Linoleic Acid from By-Products of Vegetable Oil Refining, U.S. Patent 6,414,171 (2002).

  98. Reaney, M.J.T., Y.-D. Liu, and N.D. Westcott, Commerical Production of Conjugated Linoleic Acid, in Advances in Conjugated Linoleic Acid Research, edited by M.P. Yurawecz, M.M. Mossoba, J.K.G. Kramer, M.W. Pariza, and G.J. Nelson, AOCS Press, Champaign, IL, 1999, pp. 39–54.

    Google Scholar 

  99. Remmereit, J., J. Wadstein, and J. Klaveness, Conjugated Linoleic Acid in Treatment and Prophylaxis of Diabetes, U.S. Patent 6,440,931 (2002).

  100. Pariza, M.W., Y. Park, and M.E. Cook, The Biologically Active Isomers of Conjugated Linoleic Acid, Prog. Lipid Res. 40:283–298 (2001).

    Article  CAS  Google Scholar 

  101. Isbell, T.A., and S.C. Cermak, Synthesis of δ-Eicosanolactone and δ-Docosanolactone Directly from Meadowfoam Oil, J. Am. Oil Chem. Soc. 78:527–531 (2001).

    CAS  Google Scholar 

  102. Isbell, T.A., Development of Meadowfoam as an Industrial Crop Through Novel Fatty Acid Derivatives, Lipid Technol. 9:140–144 (1997).

    CAS  Google Scholar 

  103. Erhan, S.M., and R. Kleiman, Meadowfoam Oil Factice and Its Performance in Natural Rubber Mixes, Rubber World 203:33–36 (1990).

    CAS  Google Scholar 

  104. Mund, M.S., and T.A. Isbell, Synthesis of Chloroalkoxy Eicosanoic and Docosanoic Acids from Meadowfoam Fatty Acids by Oxidation with Aqueous Sodium Hypochlorite, J. Am. Oil Chem. Soc. 76:1189–1200 (1999).

    Article  CAS  Google Scholar 

  105. O'Lenick, A.J., Jr., Free Radical Polymers Based on Meadowfoam Esters, European Patent 1,221,450 (2002).

  106. Isshiki, T., M. Nakanishi, and T. Himeno, Skin-Lightening Cosmetics Containing Ellagic Acid and Taurines, Japanese Patent 2003-267,818 (2003).

  107. Friedman, R.S., Method for Stimulating Human Hair Growth, WO Patent 2001-019,328 (2001).

  108. O'Lenick, A.J., Jr., Preparation of Meadowfoam Amidoamine Oxide Nonionic Surfactants for Use in Hair Conditioners, U.S. Patent 5,907,049 (1999).

  109. O'Lenick, A.J., Jr. Preparation of Meadowfoam-Based Quaternary Aminoamide Cationic Surfactants, U.S. Patent 5,932,754 (1999).

  110. O'Lenick, A.J., Jr., Meadowfoam Based Sorbitan Esters, U.S. Patent 6,384,248 (2002).

  111. Lie Ken Jie, M.S.F., and M.S.K.S. Rahmatullah, Enzymic Enrichment of C20 cis-5 Polyunsaturated Fatty Acids from Biota orientalis Seed Oil, J. Am. Oil Chem. Soc. 72:245–249 (1995).

    CAS  Google Scholar 

  112. Ellis, C., Composition for Cleaning Finish, U.S. Patent 879,375 (1908).

  113. Tronstad, K.J., K. Berge, R.K. Berge, and O. Bruserud, Modified Fatty Acids and Their Possible Therapeutic Targets in Malignant Diseases, Expert Opin. Therapeut. Targ. 7:663–677 (2003).

    Article  CAS  Google Scholar 

  114. Jandacek, R.J., Commercial Applications of Fatty Acid Derivatives in Foods, Food Sci. Technol. 96:387–410 (2000).

    CAS  Google Scholar 

  115. Cuperus, F.P., G. Boswinkel, B.G. Muuse, and J.T.P. Derksen, Supercritical Carbon Dioxide Extraction of Dimorphotheca pluvialis Oil Seeds, J. Am. Oil Chem. Soc. 73:1675–1679 (1996).

    Article  CAS  Google Scholar 

  116. Muuse, B.G., F.P. Cuperus, and J.T.P. Derksen, Extraction and Characterization of Dimorphotheca pluvialis Seed Oil, 71:313–317 (1994).

    CAS  Google Scholar 

  117. Hayes, D.G., R. Kleiman, D. Weisleder, R.O. Adlof, F.P. Cuperus, and J.T.P. Derksen, Occurrence of Estolides in Processed Dimorphotheca pluvialis Oil, Ind. Crops Prod. 4:295–301 (1995).

    Article  CAS  Google Scholar 

  118. Piazza, G.J., Jr., and M.J. Haas, Rapid Fat and Oil Splitting Using a Lipase Catalyst Found in Seeds, U.S. Patent Appl. 92.855,805 (1992).

  119. Barnebey, H.L., and A.C. Brown, Continuous Fat-Splitting Plants Using the Colgate-Emery Process, J. Am. Oil Chem. Soc. 25:95–99 (1948).

    CAS  Google Scholar 

  120. Macrae, A.R., Microbial Lipases as Catalysts for the Interesterification of Oils and Fats, in Biotechnology for the Oils and Fats Industry, edited by C. Ratledge, P. Dawson, and J. Rattray, AOCS Press, Champaign, IL, 1985, pp. 189–198.

    Google Scholar 

  121. Foglia, T.A., K.C. Jones, and P.E. Sonnett, Selectivity of Lipases: Isolation of Fatty Acids from Castor, Coriander, and Meadowfoam Oils, Eur. J. Lipid Sci. Technol. 102:612–617 (2000).

    Article  CAS  Google Scholar 

  122. Okumura, S., M. Iwai, and Y. Tsujisaka, Synthesis of Estolides During Hydrolysis of Castor Oil by Geotrichum candidum Lipase, Yukagaku 32:271–273 (1983).

    CAS  Google Scholar 

  123. Hayes, D.G., and R. Kleiman, 1,3-Specific Lipolysis of Lesquerella fendleri Oil by Immobilized and Reverse Micellar Encapsulated Lipases, J. Am. Oil Chem. Soc. 70:1121–1127 (1993).

    CAS  Google Scholar 

  124. Hayes, D.G., K.D. Carlson, and R. Kleiman, The Isolation of Hydroxy Acids from Lesquerella Oil Lipolysate Using a Saponification/Extraction Technique (SAPEX) 73:1113–1119 (1996).

    Article  CAS  Google Scholar 

  125. Frykman, H.B., and T.A. Isbell Enrichment of Lesquerolic and Auricolic Acids from Hydrolyzed Lesquerella fendleri and L. gordonii Oil by Crystallization, 74:699–702 (1997).

    CAS  Google Scholar 

  126. Cuperus, F.P., A.M. Krosse, G.B. Boswinkel, and J.T.P. Derksen, Processing of Oils from New Crops: A Hybrid Membrane Process for the Continuous Removal of Specific Fatty Acids, Recents Progres Genie Proc. 6:377–382 (1992).

    CAS  Google Scholar 

  127. Derksen, J.T.P., B.G. Muuse, F.P. Cuperus, and W.M.J. Van Gelder, New Seed Oils for Oleochemical Industry: Evaluation and Enzyme-Bioreactor Mediated Processing, Ind. Crops. Prod. 1:133–139 (1992).

    Article  CAS  Google Scholar 

  128. Derksen, J.T.P., A.M. Krosse, P. Tassignon, and F.P. Cuperus, Lipase-Catalyzed Production of Functionalized Fatty Acids from Dimorphotheca pluvialis Seed Oil, Mededelingen Faculteit Landbouwwetenschappen, Universiteit Gent 57:1741–1747 (1992).

    CAS  Google Scholar 

  129. Derksen, J.T.P., G. Boswinkel, and W.M.J. Van Gelder, Lipase-Catalyzed Hydrolysis of Triglycerides from New Oil Crops for Oleochemical Industries, in Lipases: Structure, Mechanism, and Genetic Engineering, edited by L. Alberghina, R.D. Schmid, and R. Verger, John Wiley & Sons, New York, 1991, pp. 377–380.

    Google Scholar 

  130. Lie Ken Jie, M.S.F., X. Fua, M.L. Lau Maureen, and M.L. Chye, Lipase-Catalyzed Hydrolysis of TG Contanining Acetlylenic FA, Lipids 37:997–1006 (2002).

    Article  Google Scholar 

  131. Sehanputri, P.S., and C.G. Hill, Jr., Biotechnology for the Production of Nutraceuticals Enriched in Conjugated Linoleic Acid: I. Uniresponse Kinetics of the Hydrolysis of Corn Oil by a Pseudomonas sp. Lipase Immobilized in a Hollow Fiber Reactor, Biotechnol. Bioeng. 64:568–579 (1999).

    Article  CAS  Google Scholar 

  132. McNeil, G.P., Enzymic Process for the Isolation of Erucic Acid from Vegetable Oils, U.S. Patent 5,633,151 (1997).

  133. McNeill, G.P., and P.E. Sonnet, Isolation of Erucic Acid from Rapeseed Oil by Lipase-Catalyzed Hydrolysis, J. Am. Oil Chem. Soc. 72:213–218 (1995).

    CAS  Google Scholar 

  134. Sonnet, P.E., T.A. Foglia, and S.H. Feairheller, Fatty Acid Selectivity of Lipases: Erucic Acid from Rapeseed Oil, 70:387–391 (1993).

    CAS  Google Scholar 

  135. Shimada, Y., A. Sugihara, and Y. Tominaga, Enzymatic Purification of Polyunsaturated Fatty Acids, J. Biosci. Bioeng. 91:529–538 (2001).

    Article  CAS  Google Scholar 

  136. Shimada, Y., A. Sugihara, and Y. Tominaga, Enrichment of Polyunsaturated Fatty Acids, in Lipid Biotechnology, edited by T.M. Kuo, and H.W. Gardner, Marcel Dekker, New York, 2002, pp. 493–515.

    Google Scholar 

  137. Mukherjee, K.D., Fractionation of Fatty Acids and Other Lipids Using Lipases, in Enzymes in Lipid Modification, edited by U.T. Bornscheuer, Wiley-VCH, Weinheim, Germany, 2000, pp. 23–45.

    Chapter  Google Scholar 

  138. Nagao, T., and Y. Shimada, Purification of Useful Oil- and Fat-Related Compounds Using Lipase Reactions, Food Food Ingred. J. Japan 208:259–269 (2003).

    CAS  Google Scholar 

  139. Haraldsson, G.G., and B. Kristinsson, Separation of Eicosapentaenoic and Docosahexaenoic Acid in Fish Oil by Kinetic Resolution Using Lipases, J. Am. Oil Chem. Soc. 75:1551–1556 (1998).

    CAS  Google Scholar 

  140. Shimada, Y., A. Sugihara, K. Maruyama, T. Nagao, S. Nakayama, H. Nakano, and Y. Tominaga, Enrichment of Arachidonic Acid: Selective Hydrolysis of a Single-Cell Oil from Mortierella with Candida cylindracea Lipase, 72:1323–1327 (1995).

    CAS  Google Scholar 

  141. Gamez-Meza, N., J.A. Noriega-Rodriguez, L.A. Medina-Juarez, J. Ortega-Garcia, J. Monroy-Rivera, F.J. Toro-Vazquez, H.S. Garcia, and O. Angulo-Guerrero, Concentration of Eicosapentaenoic Acid and Docosahexaenoic Acid from Fish Oil by Hydrolysis and Urea Complexation, Food Res. Intl. 36:721–727 (2003).

    Article  CAS  Google Scholar 

  142. Shimada, Y., K. Maruyama, A. Sugihara, S. Moriyama, and Y. Tominaga, Purification of Docosahexaenoic Acid from Tuna Oil by a Two-Step Enzymic Method: Hydrolysis and Selective Esterification, J. Am. Oil Chem. Soc. 74:1441–1446 (1997).

    CAS  Google Scholar 

  143. Rice, K.E., J. Watkins, and C.G. Hill, Jr., Hydrolysis of Menhaden Oil by a Candida cylindracea Lipase Immobilized in a Hollow-Fiber Reactor, Biotechnol. Bioeng. 63:33–45 (1999).

    Article  CAS  Google Scholar 

  144. Huang, J., T. Aki, S. Kawamoto, S. Shigeta, K. Ono, and O. Suzuki, Enzymatic Preparation of Glycerides Rich in Docosahexaenoic Acid from Thraustochytrid Single Cell Oils by Candida rugosa Lipase, J. Oleo Sci. 51:447–455 (2002).

    CAS  Google Scholar 

  145. McNeill, G.P., R.G. Ackman, and S.R. Moore, Lipase-Catalyzed Enrichment of Long-Chain Polyunsaturated Fatty Acids, J. Am. Oil Chem. Soc. 73:1403–1407 (1996).

    Article  CAS  Google Scholar 

  146. Moore, S.R., and G.P. McNeill, Production of Triglycerides Enriched in Long-Chain n−3 Polyunsaturated Fatty Acids, 73:1409–1414 (1996).

    Article  CAS  Google Scholar 

  147. Huang, F.-C., Y.-H. Ju, and C.-W. Huang, Enrichment of γ-Linolenic Acid from Borage Oil via Lipase-Catalyzed Reactions, 74:977–981 (1997).

    CAS  Google Scholar 

  148. Syed Rahmatullah, M.S.K., V.K.S. Shukla, and K.D. Mukherjee, Enrichment of γ-Linolenic Acid from Evening Primrose Oil and Borage Oil via Lipase-Catalyzed Hydrolysis, 71:569–573 (1994).

    Google Scholar 

  149. Huang, F.-C., Y.-H. Ju, and J.-C. Chiang, γ-Linolenic Acid-Rich Triacylglycerides Derived from Borage Oil via Lipase-Catalyzed Reactions, 76:833–837 (1999).

    CAS  Google Scholar 

  150. Hayes, D.G., and R. Kleiman, The Isolation and Recovery of Fatty Acids with Δ5 Unsaturation from Meadowfoam Oil Using Lipase-Catalyzed Hydrolysis and Esterification, 70:555–560 (1993).

    CAS  Google Scholar 

  151. Österberg, E., A.C. Blomstrom, and K. Holmberg, Lipase Catalyzed Transesterification of Unsaturated Lipids in a Microemulsion, 66:1330–1333 (1989).

    Article  Google Scholar 

  152. Tanaka, Y., T. Funada, J. Hirano, and R. Hashizume, Triglyceride Specificity of Candida cylindracea Lipase: Effect of Docosahexaenoic Acid on Resistance of Triglyceride to Lipase, 70:1031–1034 (1993).

    CAS  Google Scholar 

  153. Murty, V.R., J. Bhat, and P.K.A. Muniswaran, Hydrolysis of Oils by Using Immobilized Lipase Enzyme: A Review, Biotechnol. Bioproc. Eng. 7:57–66 (2002).

    CAS  Google Scholar 

  154. Malcata, F.X., H.R. Reyes, H.S. Garcia, C.G. Hill, Jr., and C.H. Amundson, Immobilized Lipase Reactors for Modification of Fats and Oils—A Review, J. Am. Oil Chem. Soc. 67:890–910 (1990).

    CAS  Google Scholar 

  155. Shimada, Y., A. Sugihara, Y. Minamigawa, K. Higashiyama, K. Akimoto, S. Fujikawa, S. Komemushi, and Y. Tominaga, Enzymic Enrichment of Arachidonic Acid from Mortierella Single-Cell Oil, 75:1213–1217 (1998).

    CAS  Google Scholar 

  156. Haas, M.J., J.K.G. Kramer, G. McNeill, K. Scott, T.A. Foglia, N. Sehat, J. Fritsche, M.M. Mossoba, and M.P. Yurawecz, Lipase-Catalyzed Fractionation of Conjugated Linoleic Acid Isomers, Lipids 34:979–987 (1999).

    Article  CAS  Google Scholar 

  157. McNeill, G.P., C. Rawlins, and A.C. Peilow, Enzymatic Enrichment of Conjugated Linoleic Acid Isomers and Incorporation into Triglycerides, J. Am. Oil Chem. Soc. 76:1265–1268 (1999).

    CAS  Google Scholar 

  158. Nagao, T., Y. Shimada, Y. Yamauchi-Sato, T. Yamamoto, M. Kasai, K. Tsutsumi, A. Sugihara, and Y. Tominaga, Fractionation and Enrichment of CLA Isomers by Selective Esterification with Candida rugosa Lipase, 79:303–308 (2002).

    CAS  Google Scholar 

  159. Yamauchi-Sato, Y., T. Nagao, T. Yamamoto, T. Terai, A. Sugihara, and Y. Shimada, Fractionation of Conjugated Linoleic Acid Isomers by Selective Hydrolysis with Candida rugosa Lipase, J. Oleo Sci. 52:367–374 (2003).

    CAS  Google Scholar 

  160. Nagao, T., Y. Yamauchi-Sato, A. Sugihara, T. Iwata, K. Nagao, T. Yanagita, S. Adachi, and Y. Shimada, Purification of Conjugated Linoleic Acid Isomers Through a Process Including Lipase-Catalyzed Selective Esterification, Biosci. Biotechnol. Biochem. 67:1429–1433 (2003).

    Article  CAS  Google Scholar 

  161. Warwel, S., and R. Borgdorf, Substrate Selectivity of Lipase in the Esterification of cis/trans Isomers and Positional Isomers of Conjugated Linoleic Acid (CLA), Biotechnol. Lett. 22:1151–1155 (2000).

    Article  CAS  Google Scholar 

  162. Haraldsson, G.G., Enrichment of Lipids with EPA and DHA, in Enzymes in Lipid Modification, edited by U.T. Bornscheuer, Wiley-VCH, Weinheim, Germany, 2000, pp. 170–189.

    Chapter  Google Scholar 

  163. Syed Rahmatullah, M.S.K., V.K.S. Shukla, and K.D. Mukherjee, γ-Linolenic Acid Concentrates from Borage and Evening Primrose Oil Fatty Acids via Lipase-Catalyzed Esterification, J. Am. Oil Chem. Soc. 71:563–567 (1994).

    Google Scholar 

  164. Hills, M.J., I. Kiewitt, and K.D. Mukherjee, Enzymic Fractionation of Evening Primrose Oil by Rape Lipase: Enrichment of γ-Linolenic Acid, Biotechnol. Lett. 11:629–632 (1989).

    Article  CAS  Google Scholar 

  165. Hill, M.J., I. Kiewitt, and K.D. Mukherjee, Enzymic Fractionation of Fatty Acids: Enrichment of γ-Linolenic Acid and Docosahexaenoic Acid by Selective Esterification Catalyzed by Lipases, J. Am. Oil Chem. Soc. 67:561–564 (1990).

    Google Scholar 

  166. Foglia, T.A., and P.E. Sonnet, Fatty Acid Selectivity of Lipases: γ-Linolenic Acid from Borage Oil, 72:417–420 (1995).

    CAS  Google Scholar 

  167. Schmitt-Rozieres, M., G. Vanot, V. Deyris, and L.-C. Comeau, Borago officinalis Oil: Fatty Acid Fractionation by Immobilized Candida rugosa Lipase, 76:557–562 (1999).

    CAS  Google Scholar 

  168. Van Heerden, E., and D. Litthauer, The Comparative Discriminating Abilities of Lipases in Different Media and Their Application in Fatty Acid Enrichment, Biocatal. Biotransform. 16:461–474 (1999).

    Google Scholar 

  169. Sovova, H., and M. Zarevucka, Lipase-Catalyzed Hydrolysis of Blackcurrant Oil in Supercritical Carbon Dioxide, Chem. Eng. Sci. 58:2339–2350 (2003).

    Article  CAS  Google Scholar 

  170. Shimada, Y., N. Sakai, A. Sugihara, H. Fujita, Y. Honda, and Y. Tominaga, Large-Scale Purification of γ-Linolenic Acid by Selective Esterification Using Rhizopus delemar Lipase, J. Am. Oil Chem. Soc. 75:1539–1543 (1998).

    CAS  Google Scholar 

  171. Jachmanian, I., E. Schulte, and K.D. Mukherjee, Substrate Selectivity in Esterification of Less Common Fatty Acids Catalyzed by Lipases from Different Sources, Appl. Microbiol. Biotechnol. 44:563–567 (1996).

    Article  CAS  Google Scholar 

  172. Chen, M.L., S.R. Vali, J.Y. Lin, and Y.-H. Ju, Synthesis of the Structured Lipid 1,3-Dioleyl-2-palmitoylglycerol from Palm Oil, J. Am. Oil Chem. Soc. 81:525–532 (2004).

    CAS  Google Scholar 

  173. Wanasundara, U.N., and F. Shahidi, Biotechnological Methods for Concentrating Omega-3 Fatty Acids from Marine Oils, Seafood Safety, Processing, and Biotechnology, edited by F. Shahidi, Y. Jones, and D. Kitts, Technomic Press, Lancaster, PA, 1997, pp. 225–233.

    Google Scholar 

  174. Shimada, Y., Application of Lipase Reactions to Separation and Purification of Useful Materials, INFORM 12:1168–1174 (2001).

    Google Scholar 

  175. Breivik, H., G.G. Haraldsson, and B. Kristinsson, Preparation of Highly Purified Concentrates of Eicosapentaenoic Acid and Docosahexaenoic Acid, J. Am. Oil Chem. Soc. 74:1425–1429 (1997).

    CAS  Google Scholar 

  176. Hayes, D.G., Purification of Free Fatty Acids via Urea Inclusion Compounds, in Handbook of Functional Lipids, edited by C.C. Akoh, CRC Press, Boca Raton, FL, in press.

  177. Hayes, D.G., Free Fatty acid Fractionation via Urea Inclusion Compounds, INFORM 13:832–834 (2002).

    Google Scholar 

  178. Hayes, D.G., Urea Inclusion Compound Formation, 13:781–783 (2002).

    Google Scholar 

  179. Zander, L., S. Busch, C. Meyer, S. Both, and U. Schoerken, Lipase Catalyzed Hydrolysis of Conjugated Linoleic Acid Esters, WO Patent 2003-104,472 (2003).

    Google Scholar 

  180. Shimada, Y., A. Sugihara, H. Nakano, T. Kuramoto, T. Nagao, M. Gemba, and Y. Tominaga, Purification of Docosahexaenoic Acid by Selective Esterification of Fatty Acids from Tuna Oil with Rhizopus delemar Lipase, J. Am. Oil Chem. Soc. 74:97–101 (1997).

    CAS  Google Scholar 

  181. Halldorsson, A., B. Kristinsson, C. Glynn, and G.G. Haraldsson, Separation of EPA and DHA in Fish Oil by Lipase-Catalyzed Esterification with Glycerol, 80:915–921 (2003).

    CAS  Google Scholar 

  182. Shimada, Y., T. Nagao, A. Sugihara, and Y. Tominaga, Production of Structured Lipids with Lipase, Kagaku to Kogyo 76:188–195 (2002).

    Google Scholar 

  183. Akoh, C.C., Structured Lipids, Food Sci. Technol. 117: 877–908 (2002).

    CAS  Google Scholar 

  184. Akoh, C.C., Structured Lipids for Parenteral Nutrition, US Patent 6,369,252 (2002).

  185. Akoh, C.C., S. Sellappan, L.B. Fomuso, and V.V. Yankah, Enzymatic Synthesis of Structured Lipids, in Lipid Biotechnology, edited by T.M. Kuo, and H.W. Gardner, Marcel Dekker, New York, 2002, pp. 433–460.

    Google Scholar 

  186. Gupta, R., P. Rathi, and S. Bradoo, Lipase Mediated Upgradation of Dietary Fats and Oils, Crit. Rev. Food Sci. Nutr. 43:635–644 (2003).

    Article  CAS  Google Scholar 

  187. Iwasaki, Y., and T. Yamane, Enzymatic Synthesis of Structured Lipids, J. Mol. Catal. B. Enzymat. 10:129–140 (2000).

    Article  CAS  Google Scholar 

  188. Osborn, H.T., and C.C. Akoh, Structured Lipids—Novel Fats with Medical, Nutraceutical, and Food Applications, Compr. Rev. Food Sci. Food Safety 1:93–103 (2002).

    Article  CAS  Google Scholar 

  189. Haumann, B.F., Structured Lipids Allow Fat Tailoring, INFORM 8:1004–1011 (1997).

    Google Scholar 

  190. Xu, X., Production of Specific-Structured Triacylglycerols by Lipase-Catalyzed Reactions: A Review, Eur. J. Lipid Sci. Technol. 102:287–303 (2000).

    Article  CAS  Google Scholar 

  191. Akoh, C.C., Fat Replacers, Food Technol. 52:47–53 (1998).

    CAS  Google Scholar 

  192. Shimada, Y., A. Sugihara, and Y. Tominaga, Production of Functional Lipids Containing Polyunsaturated Fatty Acids with Lipase, in Enzymes in Lipid Modification, edited by U. Bornscheuer, Wiley-VCH, Weinheim, Germany, 2000, pp. 128–147.

    Chapter  Google Scholar 

  193. Auerbach, M.H., P.W. Chang, S.L. Coleman, J.J. O'Neill, and J.C. Philips, Salatrim Reduced-Calorie Triacylglycerols, Lipid Technol. 9:137–140 (1997).

    CAS  Google Scholar 

  194. Kosmark, R., Salatrim: Properties and Applications, Food Technol. 50:98–101 (1996).

    CAS  Google Scholar 

  195. Smith, R.E., J.W. Finley, and G.A. Leveille, Overview of SALATRIM: A Family of Low-Calorie Fats, J. Agric. Food Chem. 42:432–434 (1994).

    Article  CAS  Google Scholar 

  196. Undurraga, D., A. Markovits, and S. Erazo, Cocoa Butter Equivalent Through Enzymic Interesterification of Palm Oil Midfraction, Proc. Biochem. 36:933–939 (2001).

    Article  CAS  Google Scholar 

  197. Coleman, M.H., and A.R. Macrae, Rearrangement of Fatty Acid Esters in Fat Reaction Reactants, U.S. Patent 2,705,608 (1977).

  198. Matsuo, T., N. Sawamura, Y. Hashimoto, and W. Hashida, Cocoa Butter Substitute, U.S. Patent 2,946,565 (1980).

    Google Scholar 

  199. Yankah, V.V., and C.C. Akoh, Lipase-Catalyzed Acidolysis of Tristearin with Oleic or Caprylic Acids to Produce Structured Lipids, J. Am. Oil Chem. Soc. 77:495–500 (2000).

    CAS  Google Scholar 

  200. Gandhi, N.N., and K.D. Mukherjee, Synthesis of Designer Lipids Using Papaya (Carica papaya) Latex Lipase, J. Mol. Catal. B. Enzymat. 11:271–277 (2001).

    Article  CAS  Google Scholar 

  201. Yang, T., M.-B. Fruekilde, and X. Xu, Applications of Immobilized Thermomyces lanuginosa Lipase in Interesterification, J. Am. Oil Chem. Soc. 80:881–887 (2003).

    CAS  Google Scholar 

  202. Christensen, T.C., and G. Hoelmer, Lipase Catalyzed Acyl-Exchange Reactions of Butter Oil. Synthesis of a Human Milk Fat Substitute for Infant Formulas, Milchwissenschaft 48:543–548 (1993).

    CAS  Google Scholar 

  203. Yang, T., X. Xu, C. He, and L. Li, Lipase-Catalyzed Modification of Lard to Produce Human Milk Fat Substitutes, Food Chem. 80:473–481 (2003).

    Article  CAS  Google Scholar 

  204. Mukherjee, K.D., and I. Kiewitt, Structured Triacylglycerols Resembling Human Milk Fat by Transesterification Catalyzed by Papaya (Carica papaya) Latex, Biotechnol. Lett. 20:613–616 (1998).

    Article  CAS  Google Scholar 

  205. Schmid, U., U.T. Bornscheuer, M.M. Soumanou, G.P. McNeill, and R.D. Schmid, Optimization of the Reaction Conditions in the Lipase-Catalyzed Synthesis of Structured Triglycerides, J. Am. Oil Chem. Soc. 75:1527–1531 (1998).

    CAS  Google Scholar 

  206. Schmid, U., U.T. Bornscheuer, M.M. Soumanou, G.P. McNeill, and R.D. Schmid, Highly Selective Synthesis of 1,3-Oleoyl-2-palmitoylglycerol by Lipase Catalysis, Biotechnol. Bioeng. 64:678–684 (1999).

    Article  CAS  Google Scholar 

  207. Soumanou, M.M., U.T. Bornscheuer, and R.D. Schmid, Two-Step Enzymic Reaction for the Synthesis of Pure Structured Triacylglycerides, J. Am. Oil Chem. Soc. 75:703–710 (1998).

    CAS  Google Scholar 

  208. Xu, X., L.B. Fomuso, and C.C. Akoh, Synthesis of Structured Triacylglycerols by Lipase-Catalyzed Acidolysis in a Packed Bed Bioreactor, J. Agric. Food Chem. 48:3–10 (2000).

    Article  CAS  Google Scholar 

  209. Mu, H., J.-P. Kurvinen, H. Kallio, X. Xu, and C.-E. Høy, Quantitation of Acyl Migration During Lipase-Catalyzed Acidolysis, and of the Regioisomers of Structured Triacylglycerols Formed, J. Am. Oil Chem. Soc. 78:959–964 (2001).

    CAS  Google Scholar 

  210. Fomuso, L.B., and C.C. Akoh, Lipase-Catalyzed Acidolysis of Olive Oil and Caprylic Acid in a Bench-Scale Packed Bed Bioreactor, Food Res. Intl. 35:15–21 (2002).

    Article  CAS  Google Scholar 

  211. Kim, I.-H., S.-N. Ko, S.-M. Lee, S.H. Chung, H. Kim, K.-T. Lee, and T.-Y. Ha, Production of Structured Lipids by Lipase-Catalyzed Acidolysis in Supercritical Carbon Dioxide: Effect on Acyl Migration, J. Am. Oil Chem. Soc. 81:537–542 (2004).

    CAS  Google Scholar 

  212. Lee, K.-T., and T.A. Foglia, Synthesis, Purification, and Characterization of Structured Lipids Produced from Chicken Fat, 77:1027–1034 (2000).

    CAS  Google Scholar 

  213. Zhou, D., X. Xu, H. Mu, C.-E. Hoy, and J. Adler-Nissen, Synthesis of Structured Triacylglycerols Containing Caproic Acid by Lipase-Catalyzed Acidolysis: Optimization by Response Surface Methodology, J. Agric. Food Chem. 49:5771–5777 (2001).

    Article  CAS  Google Scholar 

  214. Xu, X., H. Mu, C.E. Høy, and J. Adler-Nissen, Production of Specifically Structured Lipids by Enzymic Interesterification in a Pilot Enzyme Bed Reactor. Process Optimization by Response Surface Methodology, Fett/Lipid 101:207–214 (1999).

    Article  CAS  Google Scholar 

  215. Miura, S., A. Ogawa, and H. Konishi, A Rapid Method for Enzymatic Synthesis and Purification of the Structured Triacylglycerol, 1,3-Dilauroyl-2-oleoyl-glycerol, J. Am. Oil Chem. Soc. 76:927–931 (1999).

    CAS  Google Scholar 

  216. Paez, B.C., A.R. Medina, F.C. Rubio, L.E. Cerdan, and E.M. Grima, Kinetics of Lipase-Catalyzed Interesterification of Triolein and Caprylic Acid to Produce Structured Lipids, J. Chem. Technol. Biotechnol. 78:461–470 (2003).

    Article  CAS  Google Scholar 

  217. Kim, I.-H., H. Kim, K.-T. Lee, S.-H. Chung, and S.-N. Ko, Lipase-Catalyzed Acidolysis of Perilla Oil with Caprylic Acid to Produce Structured Lipids, 79:363–367 (2002).

    CAS  Google Scholar 

  218. Akoh, C.C., Structured Lipids—Enzymatic Approach, INFORM 6:1055–1061 (1995).

    Google Scholar 

  219. Shimada, Y., M. Suenaga, A. Sugihara, S. Nakai, and Y. Tominaga, Continuous Production of Structured Lipid Containing γ-Linolenic and Caprylic Acids by Immobilized Rhizopus delemar Lipase, J. Am. Oil Chem. Soc. 76:189–193 (1999).

    CAS  Google Scholar 

  220. Shimada, Y., A. Sugihara, K. Maruyama, T. Nagao, S. Nakayama, H. Nakano, and Y. Tominaga, Production of Structured Lipid Containing Docosahexaenoic and Caprylic Acids Using Immobilized Rhizopus delemar Lipase, J. Ferment. Bioeng. 81:299–303 (1996).

    Article  CAS  Google Scholar 

  221. Xu, X., L.B. Fomuso, and C.C. Akoh, Modification of Menhaden Oil by Enzymatic Acidolysis to Produce Structured Lipids: Optimization by Response Surface Design in a Packed Bed Reactor, J. Am. Oil Chem. Soc. 77:171–176 (2000).

    CAS  Google Scholar 

  222. Gonzalez Moreno, P.A., A.R. Medina, F.C. Rubio, B.C. Paez, and E.M. Grima, Production of Structured Lipids by Acidolysis of an EPA-Enriched Fish Oil and Caprylic Acid in a Packed Bed Reactor: Analysis of Three Different Operation Modes, Biotechnol. Prog. 20:1044–1052 (2004).

    Article  CAS  Google Scholar 

  223. Jennings, B.H., and C.C. Akoh, Enzymatic Modification of Triacylglycerols of High Eicosapentaenoic and Docosahexaenoic Acids Content to Produce Structured Lipids, J. Am. Oil Chem. Soc. 76:1133–1137 (1999).

    CAS  Google Scholar 

  224. Negishi, S., Y. Arai, S. Arimoto, K. Tsuchiya, and I. Takahashi, Synthesis of 1,3-Dicapryloyl-2-docosahexaenoylglycerol by a Combination of Nonselective and sn-1,3-Selective Lipase Reactions, 80:971–974 (2003).

    CAS  Google Scholar 

  225. Mangos, T.J., K.C. Jones, and T.A. Foglia, Lipase-Catalyzed Synthesis of Structured Low-Calorie Triacylglycerols, 76:1127–1132 (1999).

    CAS  Google Scholar 

  226. McNeill, G.P., and P.E. Sonnet, Low-Calorie Triglyceride Synthesis by Lipase-Catalyzed Esterification of Monoglycerides, 72:1301–1307 (1995).

    CAS  Google Scholar 

  227. Lipp, M., and E. Anklam, Review of Cocoa Butter and Alternative Fats for Use in Chocolate—Part A. Compositional Data, Food Chem. 62:73–97 (1998).

    Article  CAS  Google Scholar 

  228. Akoh, C.C., and X. Xu, Enzymatic Production of Betapol and Other Specialty Fats, in Lipid Biotechnology, edited by T.M. Kuo, and H.W. Gardner, Marcel Dekker, New York, 2002, pp. 461–478.

    Google Scholar 

  229. Quinlan, P., and R. Moore, Modification of Triglycerides by Lipases: Application to the Production of Nutritionally Improved Fats, INFORM 4:580–585 (1993).

    Google Scholar 

  230. Yamane, T., Lipase-Catalyzed Synthesis of Structured Triacylglycerols Containing Polyunsaturated Fatty Acids: Monitoring the Reaction and Increasing the Yield, in Enzymes in Lipid Modification, edited by U.T. Bornscheuer, Wiley-VCH, Weinheim, Germany, 2000, pp. 148–169.

    Chapter  Google Scholar 

  231. Xu, X., A. Skands, G. Jonsson, and J. Adler-Nissen, Production of Structured Lipids by Lipase-Catalysed Interesterification in an Ultrafiltration Membrane Reactor, Biotechnol. Lett. 22:1667–1671 (2000).

    Article  CAS  Google Scholar 

  232. Xu, X., Enzymatic Production of Structured Lipids: Process Reactions and Acyl Migration, INFORM 11:1121–1131 (2000).

    Google Scholar 

  233. Fureby, A.M., C. Virto, P. Adlercreutz, and B. Mattiasson, Acyl Group Migrations in 2-Monoolein, Biocatal. Biotransform. 14:89–111 (1996).

    CAS  Google Scholar 

  234. Timm-Heinrich, M., N. Skall Nielsen, X. Xu, and C. Jacobsen, Oxidative Stability of Structured Lipids Containing C18∶0, C18∶1, C18∶2, C18∶3 or CLA in sn-2-Position—As Bulk Lipids and in Milk Drinks, Innovat. Food Sci Emerg. Technol. 5:249–261 (2004).

    Article  CAS  Google Scholar 

  235. Timm-Heinrich, M., X. Xu, N. Skall Nielsen, and C. Jacobsen, Oxidative Stability of Mayonnaise and Milk Drink Produced with Structured Lipids Based on Fish Oil and Caprylic Acid, Eur. Food Res. Technol. 219:32–41 (2004).

    Article  CAS  Google Scholar 

  236. Nielsen, N.S., X. Xu, M. Timm-Heinrich, and C. Jacobsen, Oxidative Stability During Storage of Structured Lipids Produced from Fish Oil and Caprylic Acid, J. Am. Oil Chem. Soc. 81:375–384 (2004).

    CAS  Google Scholar 

  237. Torres, C.F., T.J. Nettekoven, and C.G. Hill, Preparation of Purified Acylglycerols of Eicosapentaenoic Acid and Docosahexaenoic Acid and Their Re-esterification with Conjugated Linoleic Acid, Enzyme Microb. Technol. 32:49–58 (2003).

    Article  CAS  Google Scholar 

  238. Senanayake, S.P.J.N., and F. Shahidi, Structured Lipids Enriched with Omega-3 and Omega-6 Highly Unsaturated Fatty Acids, in Food Factors in Health Promotion and Disease Prevention (ACS Symposium Series 851), edited by F. Shahidi, C.-T. Ho, S. Watanabe, and T. Osawa, American Chemical Society, Washington, DC, 2003, pp. 16–26.

    Google Scholar 

  239. Gill, I., and R. Valivety, Polyunsaturated Fatty Acids, Part 2: Biotransformations and Biotechnological Applications, Trends Biotechnol. 15:470–478 (1997).

    Article  CAS  Google Scholar 

  240. Senanayake, S.P.J.N., and F. Shahidi, Structured Lipids: Acidolysis of γ-Linolenic Acid-Rich Oils with n−3 Polyunsaturated Fatty Acids, J. Food Lipids 9:309–323 (2002).

    CAS  Google Scholar 

  241. Martinez, C.E., J.C. Vinay, R. Brieva, C.G. Hill, Jr., and H.S. Garcia, Lipase-Catalyzed Acidolysis of Corn Oil with Conjugated Linoleic Acid in Hexane, 10:11–24 (2003).

    CAS  Google Scholar 

  242. Ortega, J., A. Lopez-Hernandez, H.S. Garcia, and C.G. Hill, Jr., Lipase-Mediated Acidolysis of Fully Hydrogenated Soybean Oil with Conjugated Linoleic Acid, J. Food Sci. 69:FEP1-FEP6 (2003).

    Article  Google Scholar 

  243. Torres, C.F., B. Lin, M. Moeljadi, and C.G. Hill, Jr., Lipase-Catalyzed Synthesis of Designer Acylglycerols Rich in Residues of Eicosapentaenoic, Docosahexaenoic, Conjugated Linoleic, and/or Stearic Acids, Eur. J. Lipid Sci. Technol. 105:614–623 (2003).

    Article  CAS  Google Scholar 

  244. Yamane, T., T. Suzuki, and T. Hoshino, Bioreactors for Enzymic Reaction of Fats and Fatty Acid Derivatives, Part XV. Increasing n−3 Polyunsaturated Fatty Acid Content of Fish Oil by Temperature Control of Lipase-Catalyzed Acidolysis, J. Am. Oil Chem. Soc. 70:1285–1287 (1993).

    CAS  Google Scholar 

  245. Bornscheuer, U.T., Lipase-Catalyzed Synthesis of Monoacylglycerols, Enzyme Microb. Technol. 17:578–586 (1995).

    Article  CAS  Google Scholar 

  246. Boyle, E., Monoglycerides in Food Systems: Current and Future Uses, Food Technol. 51:52–54, 56, 58–59 (1997).

    CAS  Google Scholar 

  247. Aha, B., M. Berger, B. Jakob, G. Machmuller, C. Waldinger, and M.P. Schneider, Lipase-Catalyzed Synthesis of Regioisomerically Pure Mono- and Diglycerides, in Enzymes in Lipid Modification, edited by U.T. Bornscheuer, Wiley-VCH, Weinheim, Germany, 2000, pp. 100–115.

    Chapter  Google Scholar 

  248. Diks, R.M.M., and J.A. Bosley, The Exploitation of Lipase Selectivities for the Production of Acylglycerols, in Enzymes in Lipid Modification, edited by U.T. Bornscheuer, Wiley-VCH, Weinheim, Germany, 2000, pp. 3–22.

    Google Scholar 

  249. Krog, N., and J.B. Lauridsen, Food Emulsifiers and Their Associations with Water, Food Sci. (NY) 5:67–139 (1976).

    CAS  Google Scholar 

  250. Jeromin, L., G. Wozny, and P. Li, Process for Production of Monoglyceride by Glycerolysis of Methyl Esters, WO Patent 99-31,043 (1999).

  251. Arcos, J.A., H.S. Garcia, and C.G. Hill, Jr., Continuous Enzymatic Esterification of Glycerol with (Poly)unsaturated Fatty Acids in a Packed-Bed Reactor, Biotechnol. Bioeng. 68:563–570 (2000).

    Article  CAS  Google Scholar 

  252. Li, Z., and O.P. Ward, Lipase-Catalyzed Alcoholysis to Concentrate the n−3 Polyunsaturated Fatty Acid of Cod Liver Oil, Enzyme Microb. Technol. 15:601–606 (1993).

    Article  CAS  Google Scholar 

  253. He, Y., and F. Shahidi, Enzymatic Esterification of ω-3 Fatty Acid Concentrates from Seal Blubber Oil with Glycerol, J. Am. Oil Chem. Soc. 74:1133–1136 (1997).

    CAS  Google Scholar 

  254. Arcos, J.A., C. Otero, and C.G. Hill, Jr., Rapid Enzymatic Production of Acylglycerols from Conjugated Linoleic Acid and Glycerol in a Solvent-Free System, Biotechnol. Lett. 20:617–621 (1998).

    Article  CAS  Google Scholar 

  255. Watanabe, Y., Y. Yamauchi-Sato, T. Nagao, T. Yamamoto, K. Ogita, and Y. Shimada, Production of Monoacylglycerol of Conjugated Linoleic Acid by Esterification Followed by Dehydration at Low Temperature Using Penicillium camembertii Lipase, J. Mol. Catal. B. Enzymat. 27:249–254 (2004).

    Article  CAS  Google Scholar 

  256. Watanabe, Y., Y. Yamauchi-Sato, T. Nagao, T. Yamamoto, K. Tsutsumi, A. Sugihara, and Y. Shimada, Production of MAG of CLA in a Solvent-Free System at Low Temperature with Candida rugosa Lipase, J. Am. Oil Chem. Soc. 80:909–914 (2003).

    CAS  Google Scholar 

  257. Steffen, B., A. Ziemann, S. Lang, and F. Wagner, Enzymatic Monoacylation of Trihydroxy Compounds, Biotechnol. Lett. 14:773–778 (1992).

    Article  CAS  Google Scholar 

  258. Hayes, D.G., and R. Kleiman, Lipase-Catalyzed Synthesis of Lesquerolic Acid Wax and Diol Esters and Their Properties, J. Am. Oil Chem. Soc. 73:1385–1392 (1996).

    Article  CAS  Google Scholar 

  259. Janssen, A.E.M., A. Van der Padt, and K. van't Riet, Solvent Effects on Lipase-Catalyzed Esterification of Glycerol and Fatty Acids, Biotechnol. Bioeng. 42:953–962 (1993).

    Article  CAS  Google Scholar 

  260. Hayes, D.G., and E. Gulari, 1-Monoglyceride Production from Lipase-Catalyzed Esterification of Glycerol and Fatty Acid in Reverse Micelles, 38:507–517 (1991).

    Article  CAS  Google Scholar 

  261. Berger, M., and M.P. Schneider, Enzymic Esterification of Glycerol II. Lipase-Catalyzed Synthesis of Regioisomerically Pure 1(3)-rac-Monoacylglycerols, J. Am. Oil Chem. Soc. 69:961–965 (1992).

    CAS  Google Scholar 

  262. Yamaguchi, S., and T. Mase, High-Yield Synthesis of Monoglyceride by Mono- and Diacylglycerol Lipase from Penicillium camembertii U-150, J. Ferment. Bioeng. 72:162–167 (1991).

    Article  CAS  Google Scholar 

  263. Watanabe, Y., Y. Shimada, Y. Yamauchi-Sato, M. Kasai, T. Yamamoto, K. Tsutsumi, Y. Tominaga, and A. Sugihara, Synthesis of MAG of CLA with Penicillium camembertii Lipase, J. Am. Oil Chem. Soc. 79:891–896 (2002).

    CAS  Google Scholar 

  264. Chand, S., P. Adlercreutz, and B. Mattiasson, Lipase-Catalyzed Esterification of Ethylene Glycol to Mono- and Diesters. The Effect of Process Parameters on Reaction Rate and Product Distribution, Enzyme Microb. Technol. 20:102–106 (1997).

    Article  CAS  Google Scholar 

  265. Hayes, D.G., and E. Gulari, The Formation of Polyol-Fatty Acid Esters by Lipase in Reverse Micellar Media, Biotechnol. Bioeng. 40:110–118 (1992).

    Article  CAS  Google Scholar 

  266. Berger, M., K. Laumen, and M.P. Schneider, Lipase-Catalyzed Esterification of Hydrophilic Diols in Organic Solvents, Biotechnol. Lett. 14:553–558 (1992).

    Article  CAS  Google Scholar 

  267. Shaw, J.-F., H.-Z. Wu, and C.-J. Shieh, Optimized Enzymatic Synthesis of Propylene Glycol Monolaurate by Direct Esterification, Food Chem. 81:91–96 (2003).

    Article  CAS  Google Scholar 

  268. Fevrier, P., P. Guegan, F. Yvergnaux, J. Pierre Callegari, L. Dufosse, and A. Binet, Evaluation of Regioselectivity of Lipases Based on Synthesis Reaction Conduced with Propyl Alcohol, Isopropyl Alcohol and Propylene Glycol, J. Mol. Catal. B. Enzymat. 11:445–453 (2001).

    Article  CAS  Google Scholar 

  269. Liu, K.-J., and J.-F. Shaw, Synthesis of Propylene Glycol Monoesters of Docosahexaenoic Acid and Eicosapentaenoic Acid by Lipase-Catalyzed Esterification in Organic Solvents, J. Am. Oil Chem. Soc. 72:1271–1274 (1995).

    CAS  Google Scholar 

  270. Castillo, E., V. Dossat, A. Marty, J.S. Condoret, and D. Combes, The Role of Silica Gel in Lipase-Catalyzed Esterification Reactions of High-Polar Substrates, 74:77–85 (1997).

    CAS  Google Scholar 

  271. Yang, C.-L., and E. Gulari, Enzymic Esterification of Diols in Reverse Micellar Media, Biotechnol. Prog. 10:269–276 (1994).

    Article  CAS  Google Scholar 

  272. Viklund, F., and K. Hult, Enzymatic Synthesis of Surfactants Based on Polyethylene Glycol and Stearic or 12-Hydroxystearic Acid, J. Mol. Catal. B. Enzymat. 27:51–53 (2004).

    Article  CAS  Google Scholar 

  273. Garcia, E., F. Ferrari, T. Garcia, M. Martinez, and J. Aracil, Optimization of the Enzymatic Esterification of Diglycerol and Lauric Acid, J. Surfact. Deterg. 4:257–262 (2001).

    Article  CAS  Google Scholar 

  274. Charlemagne, D., and M.D. Legoy, Enzymic Synthesis of Polyglycerol-Fatty Acid Esters in a Solvent-Free System, J. Am. Oil Chem. Soc. 72:61–65 (1995).

    CAS  Google Scholar 

  275. Kato, T., T. Nakamura, M. Yamashita, M. Kawaguchi, T. Kato, and T. Itoh, Surfactant Properties of Purified Polyglycerol Monolaurates, J. Surfact. Deterg. 6:331–337 (2003).

    Article  CAS  Google Scholar 

  276. Linko, Y.Y., T. Tervakangas, M. Lamsa, and P. Linko, Production of Trimethylolpropane Esters of Rapeseed Oil Fatty Acids by Immobilized Lipase, Biotechnol. Technol. 11:889–892 (1997).

    Article  CAS  Google Scholar 

  277. Monot, F., Y. Benoit, D. Ballerini, and J.P. Vandecasteele, Enzymatic Synthesis of Neopentylpolyol Esters in Organic Media, Appl. Biochem. Biotechnol. 24/25:375–386 (1990).

    Google Scholar 

  278. Adachi, S., K. Nagae, and R. Matsuno, Lipase-Catalyzed Condensation of Erythritol and Medium-Chain Fatty Acids in Acetonitrile with Low Water Content, J. Mol. Catal. B. Enzymat. 6:21–27 (1999).

    Article  CAS  Google Scholar 

  279. Torres, C.F., L.P. Lessard, and C.G. Hill, Jr., Lipase-Catalyzed Esterification of Conjugated Linoleic Acid with Sorbitol: A Kinetic Study, Biotechnol. Prog. 19:1255–1260 (2003).

    Article  CAS  Google Scholar 

  280. Arcos, J.A., M. Bernabé, and C. Otero, Quantitative Enzymatic Production of 1,6-Diacyl Sorbitol Esters, Biotechnol. Bioeng. 60:53–60 (1998).

    Article  CAS  Google Scholar 

  281. Sarney, D.B., M.J. Barnard, M. Virto, and E.N. Vulfson, Enzymatic Synthesis of Sorbitan Esters Using a Low-Boiling-Point Azeotrope as a Reaction Solvent, 54:351–356 (1997).

    Article  CAS  Google Scholar 

  282. Ducret, A., A. Giroux, M. Trani, and R. Lortie, Enzymatic Preparation of Biosurfactants from Sugars or Sugar Alcohols and Fatty Acids in Organic Media Under Reduced Pressure, 48:214–221 (1995).

    Article  CAS  Google Scholar 

  283. Ducret, A., A. Giroux, M. Trani, and R. Lortie, Characterization of Enzymatically Prepared Biosurfactants, J. Am. Oil Chem. Soc. 73:109–113 (1996).

    Article  CAS  Google Scholar 

  284. Sarney, D.B., and E.N. Vulfson, Enzymatic Synthesis of Sugar Fatty Acid Esters in Solvent-Free Media, in Enzymes in Nonaqueous Solvents: Methods and Protocols (Methods in Biotechnology Vol. 15), edited by E.N. Vulfson, P.J. Halling, and H.L. Holland, Humana Press, Totawa, NJ, 2001, pp. 531–543.

    Chapter  Google Scholar 

  285. Vulfson, E., Enzymatic Synthesis of Surfactants, in Novel Surfactants, edited by K. Holmberg, Marcel-Dekker, New York, 2003, pp. 257–278.

    Google Scholar 

  286. Nakamura, S., Using Sucrose Esters as Food Additives, INFORM 8:866–874 (1997).

    Google Scholar 

  287. Lang, S., C. Syldatk, and U. Rau, Enzymatic Synthesis and Modification of Glycolipids, in Enzymes in Lipid Modification, edited by U.T. Bornscheuer, Wiley-VCH, Weinheim, Germany, 2000, pp. 363–393.

    Google Scholar 

  288. Feuge, R.O., H.J. Zeringue, Jr., T.J. Weiss, and M. Brown, Preparation of Sucrose Esters by Interesterification, J. Am. Oil Chem. Soc. 47:56–60 (1970).

    CAS  Google Scholar 

  289. Osipow, L.I., and W. Rosenblatt, Micro-emulsion Process for Preparation of Sucrose Esters, 44:307–309 (1967).

    CAS  Google Scholar 

  290. Kaufman, V.R., and N. Garti, Organic Reactions in Emulsions—Preparation of Glycerol and Polyglycerol Esters of Fatty Acids by Transesterification Reaction, 59:471–474 (1982).

    CAS  Google Scholar 

  291. Maag, H., Fatty Acid Derivatives: Important Surfactants for Household, Cosmetic and Industrial Purposes, 61:259–267 (1984).

    CAS  Google Scholar 

  292. Woudenberg-van Oosterom, M., F. van Rantwijk, and R.A. Sheldon, Regioselective Acylation of Disaccharides in tert-Butyl Alcohol Catalyzed by Candida antarctica Lipase, Biotechnol. Bioeng. 49:328–333 (1996).

    Article  CAS  Google Scholar 

  293. Ferrer, M., M.A. Cruces, M. Bernabé, A. Ballesteros, F.J. Plou, Lipase-Catalyzed Regioselective Acylation of Sucrose in Two-Solvent Mixtures, 65:10–16 (1999).

    Article  CAS  Google Scholar 

  294. Potier, P., A. Bouchu, G. Descotes, and Y. Queneau, Lipase-Catalyzed Selective Synthesis of Sucrose Mixed Diesters, Synthesis: 458–462 (2001).

  295. Pedersen, N.R., R. Wimmer, J. Emmersen, P. Degn, and L.H. Pedersen, Effect of Fatty Acid Chain Length on Initial Reaction Rates and Regioselectivity of Lipase-Catalysed Esterification of Disaccharides, Carbohydr. Res. 337:1179–1184 (2002).

    Article  CAS  Google Scholar 

  296. Sarney, D.B., M.J. Barnard, D.A. MacManus, and E.N. Vulfson, Application of Lipases to the Regioselective Synthesis of Sucrose Fatty Acid Monoesters, J. Am. Oil Chem. Soc. 73:1481–1487 (1996).

    Article  CAS  Google Scholar 

  297. Plou Gasca, F.J., E. Pastor Martinez, M.A. Cruces Villalobos, M. Ferrer Martinez, and A. Ballesteros Olmo, Specific Enzymic Acylation of a Secondary Hydroxyl of Sucrose, Spanish Patent 2,141,670 (2000).

  298. Park, S., F. Viklund, K. Hult, and R.J. Kazlauskas, Ionic Liquids Create New Opportunities for Nonaqueous Biocatalysis with Polar Substrates: Acylation of Glucose and Ascorbic Acid, in Ionic Liquids as Green Solvents: Progress and Prospects (ACS Symposium Series No. 856), edited by R.D. Rogers, American Chemical Society, Washington, DC, 2003, pp. 225–238.

    Google Scholar 

  299. Yan, Y., U.T. Bornscheuer, and R.D. Schmid, Efficient Water Removal in Lipase-Catalyzed Esterifications Using a Low-Boiling-Point Azeotrope, Biotechnol. Bioeng. 78:31–34 (2002).

    Article  CAS  Google Scholar 

  300. Cao, L., U.T. Bornscheuer, and R.D. Schmid, Lipase-Catalyzed Solid Phase Synthesis of Sugar Esters, Fett/Lipid 98:332–335 (1996).

    Article  CAS  Google Scholar 

  301. Cao, L., A. Fischer, U.T. Bornscheuer, and R.D. Schmid, Lipase-Catalyzed Solid Phase Synthesis of Sugar Fatty Acid Esters, Biocatal. Biotransform. 14:269–283 (1997).

    CAS  Google Scholar 

  302. Cao, L., U.T. Bornscheuer, and R.D. Schmid, Lipase-Catalyzed Solid-Phase Synthesis of Sugar Esters, IV: Selectivity of Lipase Towards Primary and Secondary Hydroxyl Groups in Carbohydrates, 16:249–257 (1998).

    CAS  Google Scholar 

  303. Cao, L., U.T. Bornscheuer, and R.D. Schmid, Lipase-catalyzed Solid-phase Synthesis of Sugar Esters. Influence of Immobilization on Productivity and Stability of the Enzyme, J. Mol. Catal. B. Enz. 6:279–285 (1999).

    Article  CAS  Google Scholar 

  304. Zhang, X., and D.G. Hayes, Increased Rate of Lipase-Catalyzed Saccharide-Fatty Acid Esterification by Control of Reaction Medium, J. Am. Oil Chem. Soc. 76:1495–1500 (1999).

    CAS  Google Scholar 

  305. Adelhorst, K., F. Björkling, S.E. Godtfredsen, and O. Kirk, Enzyme Catalyzed Preparation of 6-O-Acyglucopyranosides, Synthesis:112–115 (1990).

  306. Bousquet, M.P., R.M. Willemot, P. Monsan, and E. Boures, Enzymatic Synthesis of Unsaturated Fatty Acid Glucoside Esters for Dermo-Cosmetic Applications, Biotechnol. Bioeng. 63:730–736 (1999).

    Article  CAS  Google Scholar 

  307. De Goede, A.T.J.W., M. van Oostero, M.P.J. van Deurzen, R.A. Sheldon, H. van Bekkum, and F. van Rantwijk, Selective Lipase-Catalyzed Esterification of Alkyl Glycosides, Biocatalysis 9:145–155 (1994).

    Google Scholar 

  308. Kapucu, N., A. Guevenc, U. Mehmetoglu, A. Calimli, and H. Kapucu, Lipase Catalyzed Synthesis of Oleyl Oleate: Optimization by Response Surface Methodology, Chem. Eng. Commun. 190:779–796 (2003).

    Article  CAS  Google Scholar 

  309. Steinke, G., P. Weitkamp, E. Klein, and K.D. Mukherjee, High-Yield Preparation of Wax Esters via Lipase-Catalyzed Esterification Using Fatty Acids and Alcohols from Crambe and Camelina Oils, J. Agric. Food Chem. 49:647–651 (2001).

    Article  CAS  Google Scholar 

  310. Garcia, T., M. Martinez, and J. Aracil, Enzymic Synthesis of and Analog of Jojoba Oil: Optimization by Statistical Analysis, Enzyme Microb. Technol. 15:607–611 (1993).

    Article  CAS  Google Scholar 

  311. Xu, Y., W. Du, J. Zeng, and D. Liu, Conversion of Soybean Oil to Biodiesel Fuel Using Lipozyme TL IM in a Solvent-Free Medium, Biocatal. Biotransform 22:45–48 (2004).

    Article  CAS  Google Scholar 

  312. Shah S., S. Sharma, and M.N. Gupta, Enzymatic Transesterification for Biodiesel Production, Indian J. Biochem. Biophys. 40:392–399 (2003).

    CAS  Google Scholar 

  313. Du, W., Y. Xu, and D. Liu, Lipase-Catalyzed Transesterification of Soya Bean Oil for Biodiesel Production During Continuous Batch Operation, Biotechnol. Appl. Biochem. 38:103–106 (2003).

    Article  CAS  Google Scholar 

  314. Xu, Y., W. Du, D. Liu, and J. Zeng, A Novel Enzymatic Route for Biodiesel Production from Renewable Oils in a Solvent-Free Medium, Biotechnol. Lett. 25:1239–1241 (2003).

    Article  CAS  Google Scholar 

  315. Lara Pizarro, A.V., and E.Y. Park, Lipase-Catalyzed Production of Biodiesel Fuel from Vegetable Oils Contained in Waste Activated Bleaching Earth, Proc. Biochem. 38:1077–1082 (2003).

    Article  CAS  Google Scholar 

  316. Shieh, C.J., H.F. Liao, and C.C. Lee, Optimization of Lipase-Catalyzed Biodiesel by Response Surface Methodology, Bioresour. Technol. 88:103–106 (2003).

    Article  CAS  Google Scholar 

  317. Belafi-Bako, K., F. Kovacs, L. Gubicza, and J. Hancsok, Enzymatic Biodiesel Production from Sunflower Oil by Candida antarctica Lipase in a Solvent-Free System, Biocatal. Biotransform. 20:437–439 (2002).

    Article  CAS  Google Scholar 

  318. Watanabe, Y., Y. Shimada, A. Sugihara, and Y. Tominaga, Conversion of Degummed Soybean Oil to Biodiesel Fuel with Immobilized Candida antarctica Lipase, J. Mol. Catal B. Enzymat. 17:151–155 (2002).

    Article  CAS  Google Scholar 

  319. Shimada, Y., Y. Watanabe, A. Sugihara, and Y. Tominaga, Enzymatic Alcoholysis for Biodiesel Fuel Production and Application of the Reaction to Oil Processing, 17:133–142 (2002).

    Article  CAS  Google Scholar 

  320. Haas, M.J., G.J. Piazza, and T.A. Foglia, Enzymatic Approaches to the Production of Biodiesel Fuels, in Lipid Biotechnology, edited by T.M. Kuo, and H.W. Gardner, Marcel Dekker, New York, 2002, pp. 587–598.

    Google Scholar 

  321. Lee, K.-T., T.A. Foglia, and K.-S. Chang, Production of Alkyl Ester as Biodiesel from Fractionated Lard and Restaurant Grease, J. Am. Oil Chem. Soc. 79:191–195 (2002).

    CAS  Google Scholar 

  322. Fukuda, H., A. Kondo, and H. Noda, Biodiesel Fuel Production by Transesterification of Oils, J. Biosci. Bioeng. 92:405–416 (2001).

    Article  CAS  Google Scholar 

  323. Watanabe, Y., Y. Shimada, A. Sugihara, and Y. Tominaga, Enzymatic Conversion of Waste Edible Oil to Biodiesel Fuel in a Fixed-Bed Bioreactor, J. Am. Oil Chem. Soc. 78:703–707 (2001).

    CAS  Google Scholar 

  324. Soumanou, M.M., and U.T. Bornscheuer, Lipase-Catalyzed Alcoholysis of Vegetable Oils, Eur. J. Lipid Sci. Technol. 105:656–660 (2003).

    Article  CAS  Google Scholar 

  325. Kim, J., D.H. Altreuter, D.S. Clark, and J.S. Dordick, Rapid Synthesis of Fatty Acid Esters for Use as Potential Food Flavors, J. Am. Oil Chem. Soc. 75:1109–1113 (1998).

    CAS  Google Scholar 

  326. Hayes, D.G., The Catalytic Activity of Lipases Toward Hydroxy Acids (a review), 73:543–549 (1996).

    CAS  Google Scholar 

  327. Hayes, D.G., and R. Kleiman, Lipase-Catalyzed Synthesis of Estolides and Their Esters, 72:1309–1316 (1995).

    CAS  Google Scholar 

  328. Rüsch gen. Klaas, M., and S. Warwel, Lipase-Catalyzed Peroxy Fatty Acid Generation and Lipid Oxidation, in Enzymes in Lipid Modification, edited by U.T. Bornscheuer, Wiley-VCH, Weinheim, Germany, 2000, pp. 116–127.

    Chapter  Google Scholar 

  329. Hilker, I., D. Bothe, J. Pruss, and H.J. Warnecke, Chemo-enzymatic Epoxidation of Unsaturated Plant Oils, Chem. Eng. Sci. 56:427–432 (2001).

    Article  CAS  Google Scholar 

  330. Yadav, G.D., and K.M. Devi, Enzymatic Synthesis of Perlauric Acid Using Novozym 435, Biochem. Eng. J. 10:93–101 (2002).

    Article  CAS  Google Scholar 

  331. Rüsch gen. Klaas M., K. Steffens, and N. Patett, Biocatalytic Peroxy Acid Formation for Disinfection, J. Mol. Catal. B. Enzymat. 19–20:499–505 (2002).

    Article  Google Scholar 

  332. Uyama, H., M. Kuwabara, T. Tsujimoto, and S. Kobayashi, Enzymatic Synthesis and Curing of Biodegradable Epoxide-Containing Polyesters from Renewable Resources, Biomacromolecules 4:211–215 (2003).

    Article  CAS  Google Scholar 

  333. Gardner, H.W., Lipoxygenase Pathway in Cereals, in Advances in Cereal Science and Technology, edited by Y. Pomeranz, American Association of Cereal Chemists, St Paul, MN, 1998, pp. 161–215.

    Google Scholar 

  334. Sheldon, R.A., Synthesis of Oxiranes, in Applied Homogeneous Catalysis with Organometallic Compounds, edited by B. Cornils and W.A. Herrmann, Wiley-Canada, Mississauga, Ontario, Canada, 1996, pp. 411–423.

    Google Scholar 

  335. Hamann, H.-J., E. Hoft, and J. Liebscher, Preparation of Optically Active Hydroperoxides and Their Use for Stereoselective Oxygen Transfer, in Peroxide Chemistry, edited by W. Adam, Wiley-VCH, Weinheim, Germany, 2001, pp. 381–405.

    Google Scholar 

  336. Gargouri, M., and M. Dominique Legoy, A Two-Enzyme System for the Transformation of Unsaturated Oils to 9(S)-Hydroperoxy Fatty Acids, Biotechnol. Lett. 24:915–918 (2002).

    Article  CAS  Google Scholar 

  337. Weiss, A., U. Schoerken, V. Candar, Y. Eryasa, M. Wunderlich, N. Buyukuslu, and C. Beverungen, Process for the Enzymic Generation and Recovery of Fatty Acid Hydroperoxides, European Patent 1,336,659 (2003).

  338. Przybylski, R., Canola Oil: Physical and Chemical Properties, Canola Council of Canada, Winnipeg, 2001.

    Google Scholar 

  339. Ling, W.H., and P.J.H. Jones, Dietary Phytosterols: A Review of Metabolism, Benefits and Side Effects, Life Sci. 57:195–206 (1995).

    Article  CAS  Google Scholar 

  340. Plat, J., D.A.J.M. Kerckhoffs, and R.P. Mensink, Therapeutic Potential of Plant Sterols and Stanols, Curr. Opin. Lipidol. 11:571–576 (2000).

    Article  CAS  Google Scholar 

  341. Basheer, S., and D. Plat, Enzymatic Modification of Sterols Using Sterol-Specific Lipase, WO Patent 2001-075,083 (2001).

  342. Weber, N., P. Weitkamp, and K.D. Mukherjee, Cholesterol-Lowering Food Additives: Lipase-Catalysed Preparation of Phytosterol and Phytostanol Esters, Food. Res. Intl. 35:177–181 (2002).

    Article  CAS  Google Scholar 

  343. Shimada, Y., S. Nakai, M. Suenaga, A. Sugihara, M. Kitano, and Y. Tominaga, Facile Purification of Tocopherols from Soybean Oil Deodorizer Distillate in High Yield Using Lipase, J. Am. Oil Chem. Soc. 77:1009–1013 (2000).

    CAS  Google Scholar 

  344. Watanabe, Y., T. Nagao, Y. Hirota, M. Kitano, and Y. Shimada, Purification of Tocopherols and Phytosterols by a Two-Step in situ Enzymatic Reaction, 81:339–345 (2004).

    CAS  Google Scholar 

  345. Hirota, Y., T. Nagao, Y. Watanabe, M. Suenaga, S. Nakai, M. Kitano, A. Sugihara, and Y. Shimada, Purification of Steryl Esters from Soybean Oil Deodorizer Distillate, 80:341–346 (2003).

    CAS  Google Scholar 

  346. Chu, B.S., B.S. Baharin, and S.Y. Quek, Factors Affecting Preconcentration of Tocopherols and Tocotrienols from Palm Fatty Acid Distillate by Lipase-Catalyzed Hydrolysis, Food Chem. 79:55–59 (2002).

    Article  CAS  Google Scholar 

  347. Weber, N., P. Weitkamp, and K.D. Mukherjee, Steryl and Stanyl Esters of Fatty Acids by Solvent-Free Esterification and Transesterification in vacuo Using Lipases from Rhizomucor miehei, Candida antarctica, and Carica papaya, J. Agric. Food Chem. 49:5210–5216 (2001).

    Article  CAS  Google Scholar 

  348. Weber, N., P. Weitkamp, and K.D. Mukherjee, Fatty Acid Steryl, Stanyl, and Steroid Esters by Esterification and Transesterification in vacuo Using Candida rugosa Lipase as Catalyst, 49:67–71 (2001).

    Article  CAS  Google Scholar 

  349. Stamatis, H., V. Sereti, and F.N. Kolisis, Studies on the Enzymatic Synthesis of Lipophilic Derivatives of Natural Antioxidants, J. Am. Oil Chem. Soc. 76:1505–1510 (1999).

    CAS  Google Scholar 

  350. Osanai, S., Synthesis of Cholesterol Ester with Lipase in Organic Solvent and the Posibility of Repeated Use of the Recovered Enzyme, Ukagaku 35:955–957 (1986).

    CAS  Google Scholar 

  351. Norinobu, S., N. Senoo, S. Kaneko, F. Sato, and M. Mankura, Supercritical Preparation of Sterol Fatty Ester with Enzyme, Japanese Patent 2002-233396 (2002).

  352. Bertinotti, A., G. Carrea, G. Ottolina, and S. Riva, Regioselective Esterification of Polyhydroxylated Steroids by Candila antarctica lipase B, Tetrahedron 50:13165–13172 (1994).

    Article  CAS  Google Scholar 

  353. Yang, H., X. Xie, and P.A. Seib, Lipase-Catalyzed Synthesis of C-6 Saturated and Unsaturated Fatty Acid Esters of l-Ascorbic Acid, J. Appl. Glycosci. 50:373–378 (2003).

    CAS  Google Scholar 

  354. Maugard, T., J. Tudella, and M.D. Legoy, Study of Vitamin Ester Synthesis by Lipase-Catalyzed Transesterification in Organic Media, Biotechnol. Prog. 16:358–362 (2000).

    Article  CAS  Google Scholar 

  355. Yan, Y., U.T. Bornscheuer, and R.D. Schmid, Lipase-Catalyzed Synthesis of Vitamin C Fatty Acid Esters, Biotechnol. Lett. 21:1051–1054 (1999).

    Article  CAS  Google Scholar 

  356. Humeau, C., M. Girardin, B. Rovel, and A. Miclo, Enzymic Synthesis of Fatty Acid Ascorbyl Esters, J. Mol. Catal. B. Enzymat. 5:19–23 (1998).

    Article  CAS  Google Scholar 

  357. Tang, L., Z. Hao, M.M. Shehate, and Y. Sun, A Kinetic Study of the Synthesis of Ascorbate Fatty Acid Esters Catalysed by Immobilized Lipase in Organic Media, Biotechnol. Appl. Biochem. 32 (Pt. 1):35–39 (2000).

    Article  Google Scholar 

  358. Parnham, M.J., The Importance of Phospholipid Terminology, INFORM 7:1168–1175 (1996).

    Google Scholar 

  359. Krawczyk, T., Lecithin: Consider the Possibilities, 7:1158–1167 (1996).

    Google Scholar 

  360. Doig, S.D., and R.M.M. Diks, Toolbox for Exchanging Constituent Fatty Acids in Lecithins, Eur. J. Lipid Sci. Technol. 105:359–367 (2003).

    Article  CAS  Google Scholar 

  361. Kawahara, Y., Progress in Fats, Oils, Food Technology, INFORM 4:663–667 (1993).

    Google Scholar 

  362. Wang, X., A. Qiu, W. Tao, and P. Shen, Synthesis of Phosphatidylglycerol from Soybean Lecithin with Immobilized Phospholipase D, J. Am. Oil Chem. Soc. 74:87–91 (1997).

    CAS  Google Scholar 

  363. Voinea, M., and M. Simionescu, Designing of “Intelligent” Liposomes for Efficient Delivery of Drugs, J. Cell. Molec. Med. 6:465–474 (2002).

    CAS  Google Scholar 

  364. Fattal, E., P. Couvreur, and C. Dubernet, “Smart” Delivery of Antisense Oligonucleotides by Anionic pH-Sensitive Liposomes, Adv. Drug. Deliv. Rev. 56:931–946 (2004).

    Article  CAS  Google Scholar 

  365. Banerjee, R., Liposomes: Applications in Medicine, J. Biomat. Appl.:16:3–21 (2001).

    Article  CAS  Google Scholar 

  366. Iwasaki, Y., and T. Yamane, Phospholipases in Enzyme Engineering of Phospholipids for Food, Cosmetics, and Medical Applications, in Lipid Biotechnology, edited by T.M. Kuo and H.W. Gardner, Marcel Dekker, New York, 2002, pp. 417–431.

    Google Scholar 

  367. Adlercreutz, P., A.M. Lyberg, and D. Adlercreutz, Enzymatic Fatty Acid Exchange in Glycerolphospholipids, Eur. J. Lipid Sci. Technol. 105:638–645 (2003).

    Article  CAS  Google Scholar 

  368. Takahashi, K., and M. Hosokawa, Production of Tailor-Made Polyunsaturated Phospholipids Through Biocatalysis, in Lipid Biotechnology, edited by T.M. Kuo and H.W. Gardner, Marcel Dekker, New York, 2002, pp. 517–526.

    Google Scholar 

  369. Gramatikova, S., G. Hazlewood, D. Lam, and N. Barton, Identification, Cloning and Sequences of Phospholipases from Environmental Sources and Their Use in Oil Degumming and Other Industrial Methods, WO Patent 2003-089,620 (2003).

  370. Clausen, K., Enzymatic Oil-Degumming by a Novel Microbial Phospholipase, Eur. J. Lipid Sci. Technol. 103:333–340 (2001).

    Article  CAS  Google Scholar 

  371. Sarney, D.B., G. Fregapane, and E.N. Vulfson, Lipase-Catalyzed Synthesis of Lysopholipids in a Continuous Bioreactor, J. Am. Oil Chem. Soc. 71:93–96 (1994).

    CAS  Google Scholar 

  372. Brockerhoff, H., and M. Yurkowski, Simplified Proparation of l-α-Glycerylphosphorlcholine, Can. J. Biochem. 43:1777 (1965).

    Article  CAS  Google Scholar 

  373. Peng, L., X. Xu, H. Mu, C.-E. Høy, and J. Adler-Nissen, Production of Structured Phospholipids by Lipase-Catalyzed Acidolysis: Optimization Using Response Surface Methodology, Enzyme Microb. Technol. 31:523–532 (2002).

    Article  CAS  Google Scholar 

  374. Hosokawa, M., T. Shimatani, T. Kanada, Y. Inoue, and K. Takahashi, Conversion to Docohexaenoic Acid-Containing Phosphotidylserine from Squid Skin Lecithin by Phospholipase D-Mediated Transphosphatidylation, J. Agric. Food Chem. 48:4550–4554 (2000).

    Article  CAS  Google Scholar 

  375. Adlercreutz, D., and E. Wehtje, An Enzymatic Method for the Synthesis of Mixed-Acid Phosphatidylcholine, J. Am. Oil Chem. Soc. 81:553–557 (2004).

    CAS  Google Scholar 

  376. Anthonsen, T., P. D'Arrigo, G. Pedrocchi-Fantoni, F. Secundo, S. Servi, and E. Sundby, Phospholipids Hydrolysis in Organic Solvents Catalyzed by Immobilized Phospholipase C, J. Mol. Catal. B. Enzymat. 6:125–132 (1999).

    Article  CAS  Google Scholar 

  377. Ogino, C., Y. Yasuda, A. Kondo, N. Shimizu, and H. Fukuda, Improvement of Transphosphatidylation Reaction Model of Phospholipase D from Streptoverticillium cinnamoneum, Biochem. Eng. J. 10:115–121 (2002).

    Article  CAS  Google Scholar 

  378. Nishina, A., H. Torada, and S. Hashizume, Phosphatidylserine Enzymic Manufacture, Japanese Patent 2002-218,991 (2002).

  379. Kaneda, T., and Y. Inoue, Enzymic Manufacture of Phosphatidylserines Having Polyunsaturated Fatty Acid Residues, Japanese Patent 2001-186,898 (2001).

  380. Kudo, S., H. Yamatoya, and M. Sakai, Phosphatidylserines Enzymic Manufacture, Japanese Patent 09,121,879 (1997).

  381. Yamane, T., and S. Shimizu, Manufacture of Phosphatidylserines with Phospholipase D from Streptomyces, Japanese Patent 02,079,990 (1990).

  382. Fujita, K., S. Murakami, K. Iwanami, S. Tokuyama, and O. Nakachi, Enzymic Manufacture of Phospholipids Having Altered Basic Groups, Japanese Patent 63,036,791 (1988).

  383. Kirschner, G., G. Menon, and S. Vaccaro, Procedure for the Preparation of Pure Phosphatides and Their Use in the Cosmetic, Pharmaceutical and Alimentary Fields, Japanese Patent 1231213 (2002).

  384. Rich, J.O., and Y.L. Khmelnitsky, Phospholipase D-Catalyzed Transphosphatidylation in Anhydrous Organic Solvents, Biotechnol. Bioeng. 72:374–377 (2001).

    Article  CAS  Google Scholar 

  385. Dittrich, N., and R. Ulbrich-Hoffmann Transphosphatidylation by Immobilized Phospholipase D in Aqueous Media, Biotechnol. Appl. Biochem. 34:189–194 (2001).

    Article  CAS  Google Scholar 

  386. Sakai, M., R. Ebina, H. Yamatoya, and S. Kudo, Process for the Production of Phospholipids, WO Patent 2002-012532 (2002).

  387. Hirche, F., and R. Ulbrich-Hofmann, The Interdependence of Solvent, Acceptor Alcohol and Enzyme Source in Transphosphatidylation by Phospholipase D, Biocatal. Biotransform. 18:343–353 (2000).

    CAS  Google Scholar 

  388. Schwaneberg, U., and U.T. Bornscheuer, Fatty Acid Hydroxylations Using P450 Monooxygenase, in Enzymes in Lipid Modification, edited by U.T. Bornscheuer, Wiley-VCH, Weinhei, Germany, 2000, pp. 394–414.

    Chapter  Google Scholar 

  389. Hou, C.T., New Uses of Vegetable Oils: Novel Oxygenated Fatty Acids by Biotransformation, SIM News 53:56–61 (2003).

    Google Scholar 

  390. Huang, Y.-S., P. Mukerji, T. Das, and D.S. Knutzon, Transgenic Production of Long-Chain Polyunsaturated Fatty Acids, World Rev. Nutr. Diet. 88:243–248 (2001).

    Article  CAS  Google Scholar 

  391. Budziszewski, G.J., K.P.C. Croft, and D.F. Hildebrand, Uses of Biotechnology in Modifying Plant Lipids, Lipids 31:557–569 (1996).

    Article  CAS  Google Scholar 

  392. Murphy, D.J., Biotechnology and the Improvement of Oil Crops: Genes, Dreams and Realities, Phytochem. Rev. 1:67–77 (2002).

    Article  CAS  Google Scholar 

  393. Roscoe, T., S. Maisonneuve, and M. Delseny, Production of Unusual Fatty Acids in Rapeseed, Oleagineux 9:24–30 (2002).

    CAS  Google Scholar 

  394. Napier, J.A., L.V. Michaelson, and A.K. Stobart, Plant Desaturases: Harvesting the Fat of the Land, Curr. Opin. Plant Biol. 2:123–127 (1999).

    Article  CAS  Google Scholar 

  395. Murphy, D.J., Production of Novel Oils in Plants, Curr. Opin. Biotechnol. 10:175–180 (1999).

    Article  CAS  Google Scholar 

  396. Napier, J.A., and L.V. Michaelson, Towards the Production of Pharmaceutical Fatty Acids in Transgenic Plants, J. Sci. Food. Agric. 81:883–888 (2001).

    Article  CAS  Google Scholar 

  397. Sayanova, O.V., and J.A. Napier, Eicosapentaenoic Acid: Biosynthetic Routes and the Potential for Synthesis in Transgenic Plants, Phytochemistry 65:147–158 (2004).

    Article  CAS  Google Scholar 

  398. Jaworski, J., and E.B. Cahoon, Industrial Oils from Transgenic Plants, Curr. Opin. Plant Biol. 6:178–184 (2003).

    Article  CAS  Google Scholar 

  399. Kinney, A.J., Perspectives on the Production of Industrial Oils in Genetically Engineered Oilseeds, in Lipid Biotechnology, edited by T.M. Kuo and H.W. Gardner, Marcel Dekker, New York, 2002, pp. 85–93.

    Google Scholar 

  400. Kang, I.J., M.E. Rezac, and P.H. Pfromm, Membrane Permeation Based Sensisng for Dissolved Water in Organic Microaqueous Media, J. Membr. Sci. 239:213–217 (2004).

    Article  CAS  Google Scholar 

  401. Ko, S.-N., H. Kim, K.-T. Lee, T.-Y. Ha, S.-H. Chung, S.-M. Lee, and I.-H. Kim, Optimization of Enzymatic Synthesis of Structured Lipid with Perilla Oil and Medium Chain Fatty Acid, Food. Sci. Biotechnol. 12:253–256 (2003).

    CAS  Google Scholar 

  402. Rocha-Uribe, A., and E. Hernandez, Solvent-Free Enzymatic Synthesis of Structured Lipids Containing CLA from Coconut Oil and Tricaprylin, J. Am. Oil Chem. Soc. 81:685–689 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. Hayes.

About this article

Cite this article

Hayes, D.G. Enzyme-Catalyzed modification of oilseed materials to produce eco-friendly products. J Amer Oil Chem Soc 81, 1077–1103 (2004). https://doi.org/10.1007/s11746-004-1024-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-004-1024-2

Key Words

Navigation