Skip to main content
Log in

Lipase-catalyzed hydrolysis of TG containing acetylenic FA

  • Articles
  • Published:
Lipids

Abstract

Hydrolysis of symmetrical acetylenic TG of type AAA [viz., glycerol tri-(4-decynoate), glycerol tri-(6-octadecynoate), glycerol tri-(9-octadecynoate), glycerol tri-(10-undecynoate), and glycerol tri-(13-docosynoate)] in the presence of eight microbial lipases was studied. Novozyme 435 (Candida antarctica), an efficient enzyme for esterification, showed a significant resistance in the hydrolysis of glycerol tri-(9-octadecynoate) and glycerol tri-(13-docosynoate). Hydrolysis of acetylenic TG with Lipolase 100T (Humicola lanuginosa) was rapidly accomplished. Lipase PS-D (Pseudomonas cepacia) showed a fair resistance toward the hydrolysis of glycerol tri-(6-octadecynoate) only, which reflected its ability to recognize the Δ6 positional isomer of 18∶1. Lipase CCL (Candida cylindracea, syn. C. rugosa) and AY-30 (C. rugosa) were able to catalyze the release of 10-undecynoic acid and 9-octadecynoic acid from the corresponding TG, but less readily the 13-docosynoic acid in the case of glycerol tri-(13-docosynoate). The two lipases CCL and AY-30 were able to distinguish the small difference in structure of fatty acyl moieties in the TG substrate. To confirm this trend, three regioisomers of mixed acetylenic TG of type ABC (containing one each of Δ6, Δ9, and Δ13 acetylenic FA in various positions) were prepared and hydrolyzed with CCL and AY-40. The results reconfirmed the observation that AY-30 and CCL were able to distinguish the slight differences in the molecular structure (position of the acetylenic bond and chain length) of the acyl groups in the TG during the hydrolysis of such TG substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

18∶1(6a):

6-octadecynoate

18∶1(9a):

9-octadecynoate

22∶1(13a):

13-docosynoate

CCL:

lipase from Candida cylindracea, syn. C. rugosa

PPL:

porcine pancreatic lipase

PS-D:

immobilized lipase from Pseudomonas cepacia

triolein:

glycerol tri-(9Z-octadecenoate), or [18∶1(9c)]3

References

  1. Brockerhoff, H., and Jensen, R.G. (1974) Lipolytic Enzymes, Academic Press, New York.

    Google Scholar 

  2. Chen, Q., Sternby, B., and Nilsson, Å. (1989) Hydrolysis of Triacylglycerol Arachidonic and Linoleic Acid Ester Bonds by Human Pancreatic Lipase and Carboxyl Ester Lipase, Biochim. Biophys. Acta 1004, 372–385.

    PubMed  CAS  Google Scholar 

  3. Yang, L.-Y., Kuksis, A., and Myher, J.J. (1990) Lipolysis of Menhaden Oil Triacylglycerols and the Corresponding Fatty Acid Alkyl Esters by Pancreatic Lipase in vitro: A Reexamination, J. Lipid Res. 31, 137–148.

    PubMed  CAS  Google Scholar 

  4. Miyashita, K., Takagi, T., and Frankel, E.N. (1990) Preferential Hydrolysis of Monohydroperoxides of Linoleoyl and Linolenoyl Triacylglycerol by Pancreatic Lipase, Biochim. Biophys. Acta 1045, 233–238.

    PubMed  CAS  Google Scholar 

  5. Lee, K.-T., and Akoh, C.C. (1998) Structured Lipids: Synthesis and Applications, Food Rev. Int. 14, 17–34.

    Article  CAS  Google Scholar 

  6. Brockerhoff, H. (1965) Stereospecific Analysis of Triglycerides: An Analysis of Human Depot Fat, Arch. Biochem. Biophys. 110, 586–592.

    Article  PubMed  CAS  Google Scholar 

  7. Hara, F., Nakashima, T., and Fukuda, H. (1997) Comparative Study of Commercially Available Lipases in Hydrolysis Reaction of Phosphatidylcholine, J. Am. Oil Chem. Soc. 74, 1129–1132.

    CAS  Google Scholar 

  8. Haas, M.J., Cichowicz, D.J., Jun, W., and Scott, K. (1995) The Enzymatic Hydrolysis of Triglyceride-Phospholipid Mixtures in an Organic Solvent, J. Am. Oil Chem. Soc. 72, 519–525.

    CAS  Google Scholar 

  9. Shimada, Y., Fukushima, N., Fujita, H., Honda, Y., Sugihara, A., and Tominaga, Y. (1998) Selective Hydrolysis of Borage Oil with Candida rugosa Lipase: Two Factors Affecting the Reaction, J. Am. Oil Chem. Soc. 75, 1581–1586.

    CAS  Google Scholar 

  10. Wanasundara, U.N., and Shahidi, F. (1998) Lipase-Assisted Concentration of n−3 Polyunsaturated Fatty Acids in Acylglycerols from Marine Oils, J. Am. Oil Chem. Soc. 75, 945–951.

    CAS  Google Scholar 

  11. Pedersen, S.B., and Hølmer, G. (1995) Studies of the Fatty Acid Specificity of the Lipase from Rhizomucor meihei Toward 20∶1n−9, 20∶5n−3, 22∶1n−9, and 22∶6n−3, J. Am. Oil Chem. Soc. 72, 239–243.

    CAS  Google Scholar 

  12. Villeneuve, P., and Foglia, T.A. (1997) Lipase Specificities: Potential Application in Lipid Bioconversions, INFORM 8, 640–650.

    Google Scholar 

  13. Schmid, R.D., and Verger, R. (1998) Lipases: Interfacial Enzymes with Attractive Applications, Angew. Chem. Int. Ed. 37, 1608–1633.

    Article  Google Scholar 

  14. Villeneuve, P., Muderhwa, J.M., Graille, J., and Haas, M.J. (2000) Customizing Lipases for Biocatalysis: A Survey of Chemical, Physical, and Molecular Biological Approaches, J. Mol. Catal. B: Enzym. 9, 113–148.

    Article  CAS  Google Scholar 

  15. Foglia, T.A., Jones, K.C., and Sonnet, P.E. (2000) Selectivity of Lipases: Isolation of Fatty Acids from Castor, Coriander, and Meadowfoam Oils, Eur. J. Lipid Sci. Technol. 102, 612–617.

    Article  CAS  Google Scholar 

  16. Rice, K.E., Watkins, J., and Hill, C.G., Jr. (1999) Hydrolysis of Menhaden Oil by a Candida cylindracea Lipase Immobilized in a Hollow-Fiber Reactor, Biotechnol. Bioeng. 63, 33–45.

    Article  PubMed  CAS  Google Scholar 

  17. Bohlmann, F., Burkhardt, T., and Zdoro, C. (1973) Naturally Occurring Acetylenes, Academic Press, London, pp. 326–330.

    Google Scholar 

  18. Spitzer, V., Tomberg, W., Hartmann, R., and Aichholz, R. (1997) Analysis of the Seed Oil of Heisteria silvanii (Olacaceae)—A Rich Source of a Novel C18 Acetylenic Fatty Acid, Lipids 32, 1189–1200.

    Article  PubMed  CAS  Google Scholar 

  19. Fatope, M.O., Adoum, O.A., and Takeda, Y. (2000) C18 Acetylenic Fatty Acids of Ximenia americana with Potential Pesticidal Activity, J. Agric. Food Chem. 48, 1872–1874.

    Article  PubMed  CAS  Google Scholar 

  20. Hopkins, C.Y., and Chisholm, M.J. (1964) Occurrence of Stearolic Acid in a Seed Oil, Tetrahedron Lett. 40, 3011–3013.

    Article  Google Scholar 

  21. Berry, D.E., Chan, J.A., MacKenzie, L., and Hecht, S.M. (1991) 9-Octadecynoic Acid: A Novel DNA-Binding Agent, Chem. Res. Toxicol. 4, 195–198.

    Article  PubMed  CAS  Google Scholar 

  22. Nichols, C.S., and Cromartie, T.H. (1980) Irreversible Inactivation of the Flavoenzyme Alcohol Oxidase with Acetylenic Alcohols, Biochem. Biophys. Res. Comm. 97, 216–221.

    Article  PubMed  CAS  Google Scholar 

  23. Schilstra, M.J., Nieuwenhuizen, W.F., Veldink, G.A., and Vliegenthart, J.F.G. (1996) Mechanism of Lipoxygenase Inactivation by the Linoleic Acid Analogue Octadeca-9,12-diynoic Acid, Biochemistry 35, 3396–3401.

    Article  PubMed  CAS  Google Scholar 

  24. Kuhn, H., Hayess, K., Holzhutter, H.G., Zabolotzski, D.A., Myagkova, G.I., and Schewe, T. (1991) Inactivation of 15-Lipoxygenases by Acetylenic Fatty Acids, Biomed. Biochim. Acta 50, 835–839.

    PubMed  CAS  Google Scholar 

  25. Lie Ken Jie, M.S.F., Syed-Rahmatullah, M.S.K., Lam, C.K., and Kalluri, P. (1994) Ultrasound in Fatty Acid Chemistry: Synthesis of a 1-Pyrroline Fatty Acid Ester Isomer from Methyl Ricinoleate, Lipids 29, 889–892.

    PubMed  CAS  Google Scholar 

  26. Gilman, N.W., and Holland, B.C. (1974) Synthesis of Some Acetylenic Acids, Chem. Phys. Lipids 13, 239–248.

    Article  CAS  Google Scholar 

  27. Lie Ken Jie, M.S.F., and Lam, C.C. (1995) C-13 Studies of Polyunsaturated Triacylglycerols of Type AAA and Mixed Triacylglycerols Containing Saturated, Acetylenic and Ethylenic Acyl Groups, Chem. Phys. Lipids 78, 1–13.

    Article  Google Scholar 

  28. Lie Ken Jie, M.S.F., and Fu, X. (1998) Studies of Lipase-Catalyzed Esterification Reactions of Some Acetylenic Fatty Acids, Lipids 33, 71–75.

    Article  PubMed  CAS  Google Scholar 

  29. McNeill, G.P., and Sonnet, P.E. (1995) Isolation of Erucic Acid from Rapeseed Oil by Lipase-Catalyzed Hydrolysis, J. Am. Oil Chem. Soc. 72, 213–218.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel S. F. Lie Ken Iie.

About this article

Cite this article

Lie Ken Iie, M.S.F., Fu, X., Lau, M.M.L. et al. Lipase-catalyzed hydrolysis of TG containing acetylenic FA. Lipids 37, 997–1006 (2002). https://doi.org/10.1007/s11745-006-0992-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-0992-1

Keywords

Navigation