Skip to main content
Log in

Cross-influence of membrane polyunsaturated fatty acids and hypoxia-reoxygenation on α- and β-adrenergic function of rat cardiomyocytes

  • Published:
Lipids

Abstract

The purpose of the present investigation was to determine whether the beneficial effects of polyunsaturated fatty acids (PUFA) may influence ischemia-reperfusion-induced alterations of myocardial α- and β-adrenoceptor (α-AR, β-AR) responsiveness. This study was carried out using monolayer cultures of neonatal rat ventricular myocytes in a substrate-free, hypoxia-reoxygenation model of ischemia. The cardiomyocytes (CM) were incubated during 4 days in media enriched either with n−6 PUFA (arachidonic acid, AA) or with n−3 PUFA (eicosapentaenoic acid, EPA, and docosahexaenoic acid, DHA). The n−6/n−3 ratio in n−3 CM was close to 1.2, compared to 20.1 in n−6 CM. The contractile parameters of n−6 CM and n−3 CM were similar in basal conditions as well as during hypoxia and reoxygenation. In basal conditions, the phospholipid (PL) enrichment with long chain n−3 PUFA resulted in an increased chronotropic response to isoproterenol (ISO) and to phenylephrine (PHE). After posthypoxic reoxygenation, the chronotropic response to β-AR activation in n−6 CM was significantly enhanced as compared with the control response in normoxia. In opposition, the ISO-induced rise in frequency in n−3 CM in control normoxia and after reoxygenation was similar. In these n−3 CM, the changes in contractile parameters, which accompanied the chronotropic response, were also similar in reoxygenation and in normoxic periods, although the rise in shortening velocity was slightly increased after reoxygenation. In response to PHE addition, only the chronotropic effect of n−6 CM appeared significantly enhanced after hypoxic treatment. These results suggested that increasing n−3 PUFA in PL reduced the increase in α- and β-AR functional responses observed after hypoxia-reoxygenation. This effect may partly account for the assumed cardiac protective effect of n−3 PUFA, through the attenuation of the functional response to catecholamines in the ischemic myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

ANOVA:

analysis of variance

AR:

adrenoceptor

CD20:

duration at 20% contraction amplitude from peak contraction

CD80:

the duration at 80% contraction amplitude from peak contraction

CM:

cardiomyocytes

+Cmax:

time for 20–80% shortening

−Cmax:

time for 20–80% relaxation

CR:

contraction rate

DHA:

docosahexaenoic acid

EPA:

eicosanentaenoic acid

ISO:

isoproterenol

PHE:

phenylephrine

PL:

phospholipids

PUFA:

polyunsaturated fatty acids

References

  1. Lervang, H.H., Schmidt, E.B., Moller, J., Svaneborg, N., Varming, K., Madsen, P.H., and Dyerberg, J. (1993) The Effect of Low-Dose Supplementation with n−3 Polyunsaturated Fatty Acids on Some Risk Markers of Coronary Heart Disease, Scand. J. Clin. Lab. Invest. 53, 417–423.

    PubMed  CAS  Google Scholar 

  2. Hock, C.E., Holahan, M.A., and Reibel, D.K. (1987) Effect of Dietary Fish Oil on Myocardial Phospholipids and Myocardial Ischemic Damage, Am. J. Physiol. 252, H554-H560.

    PubMed  CAS  Google Scholar 

  3. Benediktsdottir, V.E., and Gudbjarnason, S. (1988) Modification of the Fatty Acid Composition of Rat Heart Sarcolemma with Dietary Cod Liver Oil, Corn Oil or Butter, J. Mol. Cell. Cardiol. 20, 141–147.

    Article  PubMed  CAS  Google Scholar 

  4. Demaison, L., Sergiel, J.P., Moreau, D., and Grynberg, A. (1994) Influence of the Phospholipid n−6/n−3 Polyunsaturated Fatty Acid Ratio on the Mitochondrial Metabolism Before and After Ischemia, Biochim. Biophys. Acta 1227, 53–59.

    PubMed  CAS  Google Scholar 

  5. Yang, B.C., Saldeen, T.G.P., Bryant, J.L., Nichols, W.W., and Mehta, J.L. (1993) Long-Term Dietary Fish Oil Supplementation Protects Against Ischemia-Reperfusion-Induced Myocardial Dysfunction in Isolated Rat Hearts, Am. Heart J. 126, 1287–1292.

    Article  PubMed  CAS  Google Scholar 

  6. Alam, S.Q., Ren, Y.F., and Alam, B.S. (1988) (3H)Forskolin-and (3H)Dihydroalprenolol-Binding Sites and Adenylate Cyclase Activity in Heart of Rats Fed Diets Containing Different Oils, Lipids 23, 207–213.

    PubMed  CAS  Google Scholar 

  7. Skuladottir, G.V., Schioth, H.B., and Gudbjarnason, S. (1993) Polyunsaturated Fatty Acids in Heart Muscle and α(1)-Adrenoceptor Binding Properties, Biochem. Biophysi. Acta 1178, 49–54.

    Article  CAS  Google Scholar 

  8. Gudmundsdottir, E., Benediktsdottir, V.E., and Gudbjarnason, S. (1991) Combined Effects of Age and Dietary Fat on β-1-Receptors and Ca2+ Channels in Rat Hearts, Am. J. Physiol. 260, H66-H72.

    PubMed  CAS  Google Scholar 

  9. Reibel, D.K., Holahan, M.A., and Hock, C.E. (1988) Effects of Dietary Fish Oil on Cardiac Responsiveness to Adrenoceptor Stimulation, Am. J. Physiol. 254, 494–499.

    Google Scholar 

  10. Courtois, M., Khatami, S., Fantini, E., Athias, P., Mielle, P., and Grynberg, A. (1992) Polyunsaturated Fatty Acids in Cultured Cardiomyocytes: Effect on Physiology and β-Adrenoceptor Function, Am. J. Physiol. 262, H451-H456.

    PubMed  CAS  Google Scholar 

  11. Pepe, S., and McLennan, P.L. (1996) Dietary Fish Oil Confers Direct Antiarrhythmic Properties in the Myocardium of Rats, J. Nutr. 126, 34–42.

    PubMed  CAS  Google Scholar 

  12. Hock, C.E., Beck, L.D., Bodine, R.C., and Reibel, D.K. (1990) Influence of Dietary n−3 Fatty Acids on Myocardial Ischemia and Reperfusion, Am. J. Physiol. 259, H1518-H1526.

    PubMed  CAS  Google Scholar 

  13. Grynberg, A., Fantini, E., Athias, P., Degois, M., Guenot, L., Courtois, M., and Khatami, S. (1988) Modifications of the n−6/n−3 Fatty Acid Ratio in the Phospholipids of Rat Ventricular Myocytes in Culture by the Use of Synthetic Media: Functional and Biochemical Consequences in Normoxic and Hypoxic Conditions, J. Mol. Cell. Cardiol. 20, 863–874.

    Article  PubMed  CAS  Google Scholar 

  14. Weylandt, K.H., Kang, J.X., and Leaf, A. (1996) Polyunsaturated Fatty Acids Exert Antiarrhythmic Actions as Free Acids Rather than in Phospholipids, Lipids 31, 977–982.

    Article  PubMed  CAS  Google Scholar 

  15. Grynberg, A., Athias, P., and Degois, M. (1986) Effect of Change in Growth Environment on Cultured Myocardial Cells Investigated in a Standardized Medium, In Vitro Cell. Develop. Biol. 22, 44–50.

    CAS  Google Scholar 

  16. Fantini, E., Athias, P., Courtois, M., Khatami, S., Grynberg, A., and Degois, M. (1990) Oxygen and Substrate Deprivation on Isolated Rat Cardiac Myocytes: Temporal Relationship Between Electromechanical and Biochemical Consequences, Can. J. Physiol. Pharmacol. 68, 1148–1156.

    PubMed  CAS  Google Scholar 

  17. Fantini, E., Athias, P., Courtois, M., and Grynberg, A. (1987) A Simple Gas-Flow Chamber for Cultured Cell Electrophysiology in a Controlled Atmosphere, Eur. J. Physiol. Pfluegers Arch. 409, 632–634.

    Article  CAS  Google Scholar 

  18. Delbridge, L.M.D., Roos, K.P. (1997) Optical Methods to Evaluate the Contractile Function of Unloaded Isolated Cardiac Myocytes, J. Mol. Cell. Cardiol. 29, 11–25.

    Article  PubMed  CAS  Google Scholar 

  19. Thompson, E.J., Wilson, S.H., Schuette, W.H., Whiulehouse, W.C., and Nirenberg, M.W. (1973) Measurement of the Rate and Velocity of Movement by Single Heart Cells in Culture, Am. J. Cardiol. 32, 162–166.

    Article  PubMed  CAS  Google Scholar 

  20. Ettaiche, M., Athias, P., Variot, N., Klepping, J. (1984) Characterization of Post-Junction Adrenoceptor Subtypes in Isolated Rat Myocardial Cells in Culture, Can. J. Physiol. Pharmacol. 63, 1221–1227.

    Google Scholar 

  21. Simpson, P.C., Kariya, K., Karns, L.R., Long, C.S., Karliner, J.S. (1991) Adrenergic Hormones and Control of Cardiac Myocyte Growth, Mol. Cell Biochem. 104, 35–43.

    Article  PubMed  CAS  Google Scholar 

  22. Khatami, S. (1993) Contribution à l'Étude du Rôle des Catécholamines dans l'Automatisme Cardiaque. Analyse des Catécholamines du Coeur et des Cultures de Cellules Cardiaques de Rat. PhD Thesis, University of Burgundy, France, pp. 55–59.

    Google Scholar 

  23. Sperelakis, N., and Hadad, G.E. (1995) Developmental Changes in Membrane Electrical Properties of the Heart, in Physiology and Pathology of the Heart (Sperelakis, N., ed.) pp. 669–700, Kluwer Acad. Publ., Boston.

    Google Scholar 

  24. Athias, P., and Grynberg, A. (1987) Electrophysiological Studies on Heart Cells in Culture, in The Heart Cells in Culture (Pinson A., ed.) Vol. 1, pp. 155–158, CRC Press, Boca Raton.

    Google Scholar 

  25. Watanabe, T., Delbridge, L.M., Bustamante, J.O., and McDonald, T.F. (1983) Heterogeneity of the Action Potential in Isolated Rat Ventricular Myocytes and Tissue, Circ. Res. 52, 280–290.

    PubMed  CAS  Google Scholar 

  26. Oudot, F., Grynberg, A., and Sergiel, J.P. (1994) Eicosanoid Synthesis in Cardiomyocytes: Influence of Hypoxia, Reoxygenation and Polyunsaturated Fatty Acids, Am. J. Physiol. 268, H308-H315.

    Google Scholar 

  27. Hallaq, H., Sellmayer, A., Smith, T.W., and Leaf, A. (1990) Protective Effect of Eicosapentaenoic Acid on Ouabain Toxicity in Neonatal Rat Cardiac Myocytes, Proc. Natl. Acad. Sci. 87, 7834–7838.

    Article  PubMed  CAS  Google Scholar 

  28. Charnock, J.S., McLennan, P.L., Abeywardena, M.Y., and Dryden, W.F. (1985) Diet and Cardiac Arrhythmia: Effects of Lipids on Age-Related Changes in Myocardial Function in the Rat, Ann. Nutr. Metab. 29, 306–318.

    Article  PubMed  CAS  Google Scholar 

  29. Hartog, J.M., Verdouw, P.D., Klompe, M., and Lamers, J.M.J. (1987) Dietary Mackerel Oil in Pigs: Effect on Plasma Lipids, Cardiac Sarcolemmal Phospholipids and Cardiovascular Parameters, J. Nutr. 117, 1371–1378.

    PubMed  CAS  Google Scholar 

  30. Magnuson, B.A., Schiefer, H.B., Crichlow, E.C., Bell, J.M., and Olson, J.P. (1997) Effects of Various High-Fat Diets on Myocardial Contractility and Morphology in Rats, Drug. Nutr. Inter. 5, 213–226.

    Google Scholar 

  31. Chevalier, A., Demaison, L., Grynberg, A., and Athias, P. (1990) Influence of the Phospholipid Polyunsaturated Fatty Acid Composition on Some Metabolic Disorders Induced in Rat Cardiomyocytes by Hypoxia and Reoxygenation, J. Mol. Cell. Cardiol. 22, 1177–1186.

    Article  PubMed  CAS  Google Scholar 

  32. Karmazyn, M., Horackova, M., and Murphy, M.G. (1987) Effects of Dietary Cod Liver Oil on Fatty Acid Composition and Calcium Transports in Isolated Adult Rat Ventricular Myocytes and on the Response of Isolated Hearts to Ischemia and Reperfusion, Can. J. Physiol. Pharmacol. 65, 201–209.

    PubMed  CAS  Google Scholar 

  33. Durot, I., Athias, P., Oudot, F., and Grynberg, A. (1997) Influence of Phospholipid Long Chain Polyunsaturated Fatty Acid Composition on Rat Cardiomyocyte Function in Physiological Conditions and During Hypoxia-Reoxygenation, Mol. Cell. Biochem. 175, 253–262.

    Article  PubMed  CAS  Google Scholar 

  34. Delerive, P., Oudot, F., Ponsard, B., Talpin, S., Sergiel, J.P., Cordelet, C., Athias, P., and Grynberg, A. (1999) Hypoxia-Reoxygenation and Polyunsaturated Fatty Acids Modulate Adrenergic Functions in Cultured Cardiomyocytes, J. Mol. Cell. Cardiol. 31, 377–386.

    Article  PubMed  CAS  Google Scholar 

  35. Anderson, K.E., Dart, A.M., and Woodcock, E.A. (1995) Inositol Phosphate Release and Metabolism During Myocardial Ischemia and Reperfusion in Rat Heart, Circulation Res. 76, 261–268.

    PubMed  CAS  Google Scholar 

  36. Van den Ende, R., Batink, H.D., Michel, M.C., and Vanzwieten, P.A. (1994) Influence of Ischemia and Reperfusion on Cardiac Signal Transduction G Protein Content, Adenylyl Cyclase Activity, Cyclic AMP Content, and Forskolin and Dibutyryl Cyclic AMP-Induced Inotropy in the Rat Langendorff Heart, Fund. Clin. Pharmacol. 8, 408–416.

    Article  Google Scholar 

  37. Strasser, R.H., Krimmer, J., Braundullaeus, R., Marquetant, R., and Kubler, W. (1990) Dual Sensitization of the Adrenergic System in Early Myocardial Ischemia—Independent Regulation of the β-Adrenergic Receptors and the Adenylyl Cyclase, J. Mol. Cell. Cardiol. 22, 1405–1423.

    Article  PubMed  CAS  Google Scholar 

  38. Ungerer, M., Kessebohm, K., Kronsbein, K., Lohse, M.J., and Richardt, G. (1996) Activation of β-Adrenergic Receptor Kinase During Myocardial Ischemia, Circulation Res. 79, 455–460.

    PubMed  CAS  Google Scholar 

  39. Debburman, S.K., Ptasienski, J., Boetticher, E., Lomasney, J.W., Benovic, J.L., and Hosey, M.M. (1995) Lipid-Mediated Regulation of G Protein-Coupled Receptor Kinases 2 and 3, J. Biol. Chem. 270, 5742–5747.

    Article  PubMed  CAS  Google Scholar 

  40. McMurchie, E.J. (1988) Dietary Lipids and the Regulation of Membrane Fluidity and Function, in Physiological Regulation of Membrane Fluidity (Aloia, R.C., Curtain, C.C., Gordon, L.H., eds.) Vol. 3, pp. 189–237, Alan R. Liss. Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Athias.

About this article

Cite this article

Ponsard, B., Durot, I., Delerive, P. et al. Cross-influence of membrane polyunsaturated fatty acids and hypoxia-reoxygenation on α- and β-adrenergic function of rat cardiomyocytes. Lipids 34, 457–466 (1999). https://doi.org/10.1007/s11745-999-0385-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-999-0385-5

Keywords

Navigation