Skip to main content
Log in

Chronic intermittent hypoxia affects the cytosolic phospholipase A2α/cyclooxygenase 2 pathway via β2-adrenoceptor-mediated ERK/p38 stimulation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cardiac resistance against acute ischemia/reperfusion (I/R) injury can be enhanced by adaptation to chronic intermittent hypoxia (CIH), but the changes at the molecular level associated with this adaptation are still not fully explored. Phospholipase A2 (PLA2) plays an important role in phospholipid metabolism and may contribute to membrane destruction under conditions of energy deprivation during I/R. The aim of this study was to determine the effect of CIH (7000 m, 8 h/day, 5 weeks) on the expression of cytosolic PLA2α (cPLA2α) and its phosphorylated form (p-cPLA2α), as well as other related signaling proteins in the left ventricular myocardium of adult male Wistar rats. Adaptation to CIH increased the total content of cPLA2α by 14 % in myocardial homogenate, and enhanced the association of p-cPLA2α with the nuclear membrane by 85 %. The total number of β-adrenoceptors (β-ARs) did not change but the β21 ratio markedly increased due to the elevation of β2-ARs and drop in β1-ARs. In parallel, the amount of adenylyl cyclase decreased by 49 % and Giα proteins increased by about 50 %. Besides that, cyclooxygenase 2 (COX-2) and prostaglandin E2 (PGE2) increased by 36 and 84 %, respectively. In parallel, we detected increased phosphorylation of protein kinase Cα, ERK1/2 and p38 (by 12, 48 and 19 %, respectively). These data suggest that adaptive changes induced in the myocardium by CIH may include activation of cPLA2α and COX-2 via β2-AR/Gi-mediated stimulation of the ERK/p38 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Asemu G, Papousek F, Ostadal B, Kolar F (1999) Adaptation to high altitude hypoxia protects the rat heart against ischemia-induced arrhythmias. Involvement of mitochondrial KATP channel. J Mol Cell Cardiol 31:1821–1831. doi:10.1006/jmcc.1999.1013

    Article  CAS  PubMed  Google Scholar 

  2. Neckar J, Szarszoi O, Koten L, Papousek F, Ostadal B, Grover GJ, Kolar F (2002) Effects of mitochondrial KATP modulators on cardioprotection induced by chronic high altitude hypoxia in rats. Cardiovasc Res 55:567–575. doi:10.1016/s0008-6363(02)00456-x

    Article  CAS  PubMed  Google Scholar 

  3. Kolar F, Jezkova J, Balkova P, Breh J, Neckar J, Novak F, Novakova O, Tomasova H, Srbova M, Ostadal B, Wilhelm J, Herget J (2007) Role of oxidative stress in PKC-δ upregulation and cardioprotection induced by chronic hypoxia. Am J Physiol Heart Circ Physiol 292:H224–H230. doi:10.1152/ajpheart.00689.2006

    Article  CAS  PubMed  Google Scholar 

  4. Hlavackova M, Kozichova K, Neckar J, Kolar F, Musters RJP, Novak F, Novakova O (2010) Up-regulation and redistributon of protein kinase C-δ in chronically hypoxic heart. Mol Cell Biochem 345:271–282. doi:10.1007/s11010-010-0581-8

    Article  CAS  PubMed  Google Scholar 

  5. Ravingerova T, Matejikova J, Neckar J, Andelova E, Kolar F (2007) Differential role of PI3K/Akt pathway in the infarct size limitation and antiarrhythmic protection in the rat heart. Mol Cell Biochem 297:111–120. doi:10.1007/s11010-006-9335-z

    Article  CAS  PubMed  Google Scholar 

  6. Novotny J, Bourova L, Malkova O, Svoboda P, Kolar F (1999) G proteins, β-adrenoreceptors and β-adrenergic responsiveness in immature and adult rat ventricular myocardium: influence of neonatal hypo- and hyperthyroidism. J Mol Cell Cardiol 31:761–772. doi:10.1006/jmcc.1998.0913

    Article  CAS  PubMed  Google Scholar 

  7. Kilts JD, Gerhardt MA, Richardson MD, Sreeram G, Mackensen GB, Grocott HP, White WD, Davis RD, Newman MF, Reves JG, Schwinn DA, Kwatra MM (2000) β2-adrenergic and several other G protein-coupled receptors in human atrial membranes activate both Gs and Gi. Circ Res 87:705–709. doi:10.1161/01.res.87.8.705

    Article  CAS  PubMed  Google Scholar 

  8. Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta E, Crow MT (2000) The β2-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes thorough Gi-dependent coupling to phosphatidyl 3′-kinase. Circ Res 87:1172–1179. doi:10.1161/01.res.87.12.1172

    Article  CAS  PubMed  Google Scholar 

  9. Strniskova M, Ravingerova T, Neckar J, Kolar F, Pastorekova S, Barancik M (2006) Changes in the expression and/or activation of regulatory proteins in rat hearts adapted to chronic hypoxia. Gen Physiol Biophys 25:25–41

    CAS  PubMed  Google Scholar 

  10. Pavoine C, Behforouz N, Gauthier C, Le Gouvello S, Roudot-Thoraval F, Martin CR, Pawlak A, Feral C, Defer N, Houel R, Magne S, Amadou A, Loisance D, Duvaldestin P, Pecker F (2003) β2-adrenergic signaling in human heart: shift from the cyclic AMP to the arachidonic acid pathway. Mol Pharmacol 64:1117–1125. doi:10.1124/mol.64.5.1117

    Article  CAS  PubMed  Google Scholar 

  11. Kozlovski VI, Lomnicka M, Bartus M, Sternak M, Chlopicki S (2015) Anti-thrombotic effects of nebivolol and carvedilol: involvement of β2 receptors and COX-2/PGI2 pathways. Pharmacol Rep 67:1041–1047. doi:10.1016/j.pharep.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  12. Burke JE, Dennis EA (2009) Phospholipase A2 structure/function, mechanism, and signaling. J Lipid Res 50:S237–S242. doi:10.1194/jlr.r800033-jlr200

    Article  PubMed  PubMed Central  Google Scholar 

  13. Van Bilsen M, Van der Vusse GJ (1995) Phospholipase A2-dependent signalling in the heart. Cardiovasc Res 30:518–529. doi:10.1016/s0008-6363(95)00098-4

    Article  PubMed  Google Scholar 

  14. Cummings BS, McHowat J, Schnellmann RG (2000) Phospholipase A2s in cell injury and death. J Pharmacol Exp Ther 294:793–799

    CAS  PubMed  Google Scholar 

  15. Clark JD, Lin LL, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL (1991) A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP. Cell 65:1043–1051. doi:10.1016/0092-8674(91)90556-e

    Article  CAS  PubMed  Google Scholar 

  16. Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ (1993) cPLA2 is phosphorylated and activated by MAP kinase. Cell 72:269–278. doi:10.1016/0092-8674(93)90666-e

    Article  CAS  PubMed  Google Scholar 

  17. Muthalif MM, Benter IF, Uddin MR, Malik KU (1996) Calcium/calmodulin-dependent protein kinase IIα mediates activation of mitogen-activated protein kinase and cytosolic phospholipase A2 in norepinephrine-induced arachidonic acid release in rabbit aortic smooth muscle cells. J Biol Chem 271:30149–30157. doi:10.1074/jbc.271.47.30149

    Article  CAS  PubMed  Google Scholar 

  18. Anfuso CD, Lupo G, Romeo L, Giurdanella G, Motta C, Pascale A, Tirolo C, Marchetti B, Alberghina M (2007) Endothelial cell-pericyte cocultures induce PLA2 protein expression through activation of PKCα and the MAPK/ERK cascade. J Lipid Res 48:782–793. doi:10.1194/jlr.m600489-jlr200

    Article  CAS  PubMed  Google Scholar 

  19. Kramer RM, Roberts EF, Um SL, Börsch-Haubold AG, Watson SP, Fisher MJ, Jakubowski JA (1996) p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in trombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J Biol Chem 271:27723–27729. doi:10.1074/jbc.271.44.27723

    Article  CAS  PubMed  Google Scholar 

  20. Hammarberg C, Fredholm BB, Schulte G (2004) Adenosine A3 receptor-mediated regulation of p38 and extracellular-regulated kinase ERK1/2 via phosphatidylinositol-3′-kinase. Biochem Pharmacol 67(1):129–134. doi:10.1016/j.bcp.2003.08.031

    Article  CAS  PubMed  Google Scholar 

  21. Graves LM, Lawrence JC Jr (1996) Insulin, growth factors, and cAMP: antagonism in the signal transduction pathways. Trends Endocrinol Metab 7(2):43–50. doi:10.1016/1043-2760(95)00204-9

    Article  CAS  PubMed  Google Scholar 

  22. Novotny J, Bourova L, Kolar F, Svoboda P (2001) Membrane-Bound and cytosolic forms of heterotrimeric G proteins in young and adult rat myocardium: influence of neonatal hypo- and hyperthyroidism. J Cell Biochem 82:215–224. doi:10.1002/jcb.1157

    Article  CAS  PubMed  Google Scholar 

  23. Jirkovsky E, Popelova O, Krivakova-Stankova P, Vavrova A, Hroch M, Haskova P, Brcakova-Dolezelova E, Mucida S, Adamcova M, Simunek T, Cervinkova Z, Gersl V, Sterba M (2012) Chronic anthracycline cardiotoxicity: molecular and functional analysis with focus on nuclear factor erythroid 2-related factor 2 and mitochondrial biogenesis pathways. J Pharmacol Exp Ther 343:468–478. doi:10.1124/jpet.112.198358

    Article  CAS  PubMed  Google Scholar 

  24. Klevstig M, Manakov D, Kasparova D, Brabcova I, Papousek F, Zurmanova J, Zidek V, Silhavy J, Neckar J, Pravenec M, Kolar F, Novakova O, Novotny J (2013) Transgenic rescue of defective Cd36 enhances myocardial adenylyl cyclase signaling in spontaneously hypertensive rats. Pflugers Arch 465:1477–1486. doi:10.1007/s00424-013-1281-5

    Article  CAS  PubMed  Google Scholar 

  25. Waskova-Arnostova P, Elsnicova B, Kasparova D, Hornikova D, Kolar F, Novotny J, Zurmanova J (2015) Cardioprotective adaptation of rats to intermittent hypobaric hypoxia is accompanied by the increased association of hexokinase with mitochondria. J Appl Physiol 119:1487–1493. doi:10.1152/japplphysiol.01035.2014

    Article  PubMed  Google Scholar 

  26. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartensen V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  27. Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of co-localization of objects in dual-colour confocal images. J Microsc 169:375–382. doi:10.1111/j.1365-2818.1993.tb03313.x

    Article  Google Scholar 

  28. Holzerova K, Hlavackova M, Zurmanova J, Borchert G, Neckar J, Kolar F, Novak F, Novakova O (2015) Involvement of PKCε in cardioprotection induced by adaptation to chronic continuous hypoxia. Physiol Res 64:191–201

    CAS  PubMed  Google Scholar 

  29. Hofgaard JP, Sigurdardottir KS, Treiman M (2006) Protection by 6-aminonicotinamide against oxidative stress in cardiac cells. Pharmacol Res 54:303–310. doi:10.1016/j.phrs.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  30. Winstead MV, Lucas KK, Dennis EA (2005) Group IV cytosolic phospholipase A2 mediates arachidonic acid release in H9c2 rat cardiomyocytes cells in response to hydrogen peroxide. Prostaglandins Other Lipid Mediat 78:55–66. doi:10.1016/j.prostaglandins.2005.03.004

    Article  CAS  PubMed  Google Scholar 

  31. Grewal S, Herbert SP, Ponnambalam S, Walker JH (2005) Cytosolic phospholipase A2α and cyclooxygenase 2 localize to itracellular membranes of EA.hy.926 endothelial cell that are distinct from the endoplasmic reticulum and the Golgi apparatus. FEBS J 272:1278–1290. doi:10.1111/j.1742-4658.2005.04565.x

    Article  CAS  PubMed  Google Scholar 

  32. Spencer AG, Woods JW, Arakawa T, Singer II, Smith WL (1998) Subcellular localization of prostaglandin endoperoxide H synthase-1 and -2 by immunoelectron microscopy. J Biol Chem 273:9886–9893. doi:10.1074/jbc.273.16.9886

    Article  CAS  PubMed  Google Scholar 

  33. Morel S, Milano G, Ludunge KM, Corno AF, Samaja M, Fleury S, Bonny Ch, Kappenberger L, Segesser LK, Vassalli G (2006) Brief reoxygenation episodes during chronic hypoxia enhance posthypoxic recovery of LV function. Basic Res Cardiol 101:336–345. doi:10.1007/s00395-006-0596-1

    Article  CAS  PubMed  Google Scholar 

  34. Rafiee P, Shi Y, Kong X, Kirkwood A, Pritchard KA, Tweddell JS, Litwin SB, Mussatto K, Jaquiss RD, Su J, Baker JE (2002) Activation of protein kinases in chronically hypoxic infant human and rabbit hearts. Circulation 106:239–245. doi:10.1161/01.cir.0000022018.68965.6d

    Article  CAS  PubMed  Google Scholar 

  35. Seko Y, Takahashi N, Tobe K, Kadowaki T, Yazaki Y (1997) Hypoxia and hypoxia/reoxygenation activate p65PAK, p38 mitogen-activated protein kinase (MAPK), and stress-activated protein kinases (SAPK) in cultured rat cardiac myocytes. Biochem Biophys Res Commun 239:840–844. doi:10.1006/bbrc.1997.7570

    Article  CAS  PubMed  Google Scholar 

  36. Clerk A, Fuller SJ, Michael A, Sugden PH (1998) Stimulation of stress-regulated mitogen-activated protein kinases (stress-activated protein kinases/c-Jun-N-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses. J Biol Chem 273:7228–7234. doi:10.1074/jbc.273.13.7228

    Article  CAS  PubMed  Google Scholar 

  37. You HJ, Lee JW, Yoo YJ, Kim JH (2004) A pathway involving protein kinase Cδ up-regulates cytosolic phospholipase A2α in airway epithelium. Biochem Biophys Res Commun 321:657–664. doi:10.1016/j.bbrc.2004.07.022

    Article  CAS  PubMed  Google Scholar 

  38. Svoboda P, Teisinger J, Novotny J, Bourova L, Drmota T, Hejnova L, Moravcova Z, Lisy V, Rudajev V, Stohr J, Vokurkova A, Svandova I, Durchánkova D (2004) Biochemistry of transmembrane signaling mediated by trimeric G proteins. Physiol Res 53:S141–S152

    CAS  PubMed  Google Scholar 

  39. Chakraborti T, Das S, Chakraborti S (2005) Proteolytic activation of protein kinase Cα by peroxynitrite in stimulating cytosolic phospholipase A2 in pulmonary endothelium: involvement of a Pertussis toxin sensitive protein. Biochemistry 44:5246–5257. doi:10.1021/bi0477889

    Article  CAS  PubMed  Google Scholar 

  40. León-Velarde F, Bourin MC, Germack R, Mohammadi K, Crozatier B, Richalet JP (2001) Differential alterations in cardiac adrenergic signaling in chronic hypoxia or norepinephrine infusion. Am J Physiol Regul Integr Comp Physiol 280:R274–R281

    PubMed  Google Scholar 

  41. Hrbasova M, Novotny J, Hejnova L, Kolar F, Neckar J, Svoboda P (2003) Altered myocardial Gs protein and adenylyl cyclase signaling in rats exposed to chronic hypoxia and normoxic recovery. J Appl Physiol 94:2423–2432. doi:10.1152/japplphysiol.00958.2002

    Article  CAS  PubMed  Google Scholar 

  42. Hahnova K, Kasparova D, Zurmanova J, Neckar J, Kolar F, Novotny J (2016) β-adrenergic signaling in rat heart is similarly affected by continuous and intermittent normobaric hypoxia. Gen Physiol Biophys 35:165–173. doi:10.4149/gpb_2015053

    Article  PubMed  Google Scholar 

  43. Kacimi R, Moalic JM, Aldashev A, Vatner DE, Richalet JP, Crozatier B (1995) Differential regulation of G protein expression in rat hearts exposed to chronic hypoxia. Am J Physiol 269:H1865–H1873

    CAS  PubMed  Google Scholar 

  44. Pei JM, Yu XC, Fung ML, Zhou JJ, Cheung CS, Wong NS, Leung MP, Wong TM (2000) Impaired Gsα and adenylyl cyclase cause β-adrenoceptor desensitization in chronically hypoxic rat hearts. Am J Physiol Cell Physiol 279:C1455–C1463

    CAS  PubMed  Google Scholar 

  45. Okumura S, Takagi G, Kawabe J, Yang G, Lee MC, Hong C, Liu J, Vatner DE, Sadoshima J, Vatner SF, Ishikawa Y (2003) Disruption of type 5 adenylyl cyclase gene preserves cardiac function against pressure overload. Proc Natl Acad Sci USA 100:9986–9990. doi:10.1073/pnas.1733772100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tong H, Bernstein D, Murphy E, Steenbergen Ch (2005) The role of β-adrenergic receptor signaling in cardioprotection. FASEB J 19:983–985. doi:10.1096/fj.04-3067fje

    CAS  PubMed  Google Scholar 

  47. Daaka Y, Luttrell LM, Lefkowitz RJ (1997) Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 390:88–91. doi:10.1038/36362

    Article  CAS  PubMed  Google Scholar 

  48. Magne S, Couchie D, Pecker F, Pavoine C (2001) β2-adrenergic receptor agonists increase intracellular free Ca2+ concentration cycling in ventricular cardiomyocytes through p38 and p42/44 MAPK-mediated cytosolic phospholipase A2 activation. J Biol Chem 276:39539–39548. doi:10.1074/jbc.m100954200

    Article  CAS  PubMed  Google Scholar 

  49. Mackay K, Mochly-Rosen D (2001) Arachidonic acid protects neonatal rat cardiac myocytes from ischaemic injury through epsilon protein kinase C. Cardiovasc Res 50:65–74. doi:10.1016/s0008-6363(00)00322-9

    Article  CAS  PubMed  Google Scholar 

  50. Air-Mamar B, Cailleret M, Rucker-Martin C, Bouabdallah A, Candiani G, Adamy C, Duvaldestin P, Pecker F, Defer N, Pavoine C (2005) The cytosolic phospholipase A2 pathway, a safeguard of β2-adrenergic cardiac effects in rat. J Biol Chem 280:18881–18890. doi:10.1074/jbc.m410305200

    Article  Google Scholar 

  51. Dang H, Elliott JJ, Lin AL, Zhu B, Katz MS, Yeh CK (2008) Mitogen-activated protein kinase up-regulation and activation during rat parotid gland atrophy and regeneration: role of epidermal growth factor and β2-adrenergic receptors. Differentiation 76:546–557. doi:10.1111/j.1432-0436.2007.00251.x

    Article  CAS  PubMed  Google Scholar 

  52. Sato S, Shirato K, Mitsuhashi R, Inoue D, Kizaki T, Ohno H, Tachiyashiki K, Imaizumi K (2013) Intracellular β2-adrenergic receptor signaling specificity in mouse skeletal muscle in response to single-dose β2-agonist clenbuterol treatment and acute exercise. J Physiol Sci 63:211–218. doi:10.1007/s12576-013-0253-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saluja I, Song D, O’Regan MH, Phillis JW (1997) Role of phospholipase A2 in the release of free fatty acids during ischemia-reperfusion in the rat cerebral cortex. Neurosci Lett 233:97–100. doi:10.1016/s0304-3940(97)00646-0

    Article  CAS  PubMed  Google Scholar 

  54. Kerkelä R, Boucher M, Zaka R, Gao E, Harris D, Piuhola J, Song J, Serpi R, Woulfe KC, Cheung JY, O’Leary E, Bonventre JV, Force T (2011) Cytosolic phospholipase A2α protects against ischemia/reperfusion injury in the heart. Clin Transl Sci 4:236–242. doi:10.1111/j.1752-8062.2011.00294.x

    Article  PubMed  PubMed Central  Google Scholar 

  55. Engelbrecht AM, Ellis B (2007) Apoptosis is mediated by cytosolic phospholipase A2 during simulated ischaemia/reperfusion-induced injury in neonatal cardiac myocytes. Prostaglandins Leukot Essent Fatty Acids 77:37–43. doi:10.1016/j.plefa.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  56. Félétou M, Huang Y, Vanhoutte PM (2011) Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br J Pharmacol 164:894–912. doi:10.1111/j.1476-5381.2011.01276.x

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chytilova A, Borchert GH, Mandikova-Alanova P, Hlavackova M, Kopkan L, Khan MA, Imig JD, Kolar F, Neckar J (2015) Tumour necrosis factor-α contributes to improved cardiac ischaemic tolerance in rats adapted to chronic continuous hypoxia. Acta Physiol (Oxf) 214:97–108. doi:10.1111/apha.12489

    Article  CAS  Google Scholar 

  58. Schmedtje JF Jr, Ji YS, Liu WL, Dubois RN, Runge MS (1997) Hypoxia induces cyclooxygenase-2 via the NF-κB p65 transcription factor in human vascular endothelial cells. J Biol Chem 272:601–608. doi:10.1074/jbc.272.1.601

    Article  CAS  PubMed  Google Scholar 

  59. Oshima K, Takeyoshi I, Tsutsumi H, Mohara J, Ohki S, Koike N, Nameki T, Matsumoto K, Morishita Y (2006) Inhibition of cyclooxygenase-2 improves cardiac function following long-term preservation. J Surg Res 135:380–384. doi:10.1016/j.jss.2006.03.044

    Article  CAS  PubMed  Google Scholar 

  60. Bolli R, Shinmura K, Tang XL, Kodani E, XuanYT Guo Y, Dawn B (2002) Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. Cardiovasc Res 55:506–519. doi:10.1016/s0008-6363(02)00414-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Charles University Grant Agency (392615), the Czech Science Foundation (13-10267S), the Ministry of Education, Youth and Sport of the Czech Republic (SVV-260313/2016) and the Operational Program OP VaVpI (CZ.1.05/4.1.00/16.0347).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Novotny.

Ethics declarations

Conflict of interests

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Micova, P., Hahnova, K., Hlavackova, M. et al. Chronic intermittent hypoxia affects the cytosolic phospholipase A2α/cyclooxygenase 2 pathway via β2-adrenoceptor-mediated ERK/p38 stimulation. Mol Cell Biochem 423, 151–163 (2016). https://doi.org/10.1007/s11010-016-2833-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2833-8

Keywords

Navigation