Skip to main content
Log in

Molecular species of phosphoglycerides in liver microsomes of rats fed a fat-free diet

  • Published:
Lipids

Abstract

The influence of a fat-free diet on the molecular species composition of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol (PI) of rat liver microsomes was studied by using reversed-phase high-pressure liquid chromatography. In the three phosphoglyceride classes analyzed, the fat-free diet produced a large decrease in the 18:0/20:4n−6 species but less important changes were found in the 16:0/20:4n−6 species. In PC, the most abundant phosphoglyceride class of rat liver microsomes, the fall in the 18:0/20:4n−6 species was counterbalanced mainly by an enhancement in the 16:0/18:1n−9 species although it was not evident in PE. In PI, the decrease in the 18:0/20:4n−6 species was counterbalanced by an increase in the 18:0/20:3n−9 species. Fluorescence polarization measurements of 1,6-diphenyl-1,3,5-hexatriene in liposomes of 16:0/18:1n−9-, 18:0/18:1n−9-, 16:0/20:4n−6-, and 18:0/20:4n−6-PC indicated that the change in the saturated fatty acid in the sn-1 position accompanying the replacement of 20:4n−6 by 18:1n−9 could be very important for a homeoviscous compensation, maintaining the membrane physical properties without large alterations in spite of the essential fatty acid deficiency due to the fat-free diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPH:

1,6-Diphenyl-1,3,5-hexatriene

EFA:

essential fatty acids

HPLC:

high-performance liquid chromatography

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

UV:

ultraviolet

References

  1. Hansen, H.S. (1983) Dietary Essential Fatty Acid and in vivo Prostaglandin Production in Mammals, World Rev. Nutr. Diet. 42, 102–134.

    PubMed  CAS  Google Scholar 

  2. Mead, J.F. (1984) The Noneicosanoid Functions of Essential Fatty Acids, J. Lipid Res. 25, 1517–1521.

    PubMed  CAS  Google Scholar 

  3. Léger, C.L., Daveloose, D., Christon, R., and Viret, J. (1990) Evidence for a Structurally Specific Role of Essential Polyunsaturated Fatty Acids Depending on Their Peculiar Double-Bond Distribution in Biomembranes, Biochemistry 29, 7269–7275.

    Article  PubMed  Google Scholar 

  4. Lee, A.G., East, J.M., and Froud, R.J. (1986) Are Essential Fatty Acids Essential for Membrane Function? Prog. Lipid Res. 25, 41–46.

    Article  PubMed  CAS  Google Scholar 

  5. Léger, C.L., Christon, R., Viret, J., Daveloose, D., Mitjavila, S., and Even, V. (1989) Nutrition and Biomembranes: Additional Information Concerning the Incidence of Dietary Polyunsaturated Fatty Acids on Membrane Organization and Biological Activity, Biochimie 71, 159–165.

    Article  PubMed  Google Scholar 

  6. Christon, R., Even, V., Daveloose, D., Léger, C.L., and Viret, J. (1989) Modification of Fluidity and Lipid-Protein Relationships in Pig Intestinal Brush-Border Membranes by Dietary Essential Fatty Acid Deficiency, Biochim. Biophys. Acta 980, 77–84.

    Article  PubMed  CAS  Google Scholar 

  7. Stubbs, C.D., and Smith, A.D. (1984) The Modification of Mammalian Membrane Polyunsaturated Fatty Acid Composition in Relation to Membrane Fluidity and Function, Biochim. Biophys. Acta. 779, 89–137.

    PubMed  CAS  Google Scholar 

  8. Barton, P.G., and Gunstone, F.D. (1975) Hydrocarbon Chain Packing and Molecular Motion in Phospholipid Bilayers Formed from Unsaturated Lecithins. Synthesis and Properties of Sixteen Positional Isomers of 1,2-Dioctadecenoyl-sn-glycoero-3-phosphorylcholine, J. Biol. Chem. 250, 4470–4476.

    PubMed  CAS  Google Scholar 

  9. Tricerri, M.A., Garda, H.A., and Brenner, R.R. (1994) Lipid Chain Order and Dynamics at Different Bilayer Depths in Liposomes of Several Phosphatidylcholines Studied by Differential Polarized Phase Fluorescence, Chem. Phys. Lipids 71, 61–72.

    Article  PubMed  CAS  Google Scholar 

  10. Garda, H.A., Bernasconi, A.M., and Brenner, R.R. (1994) Possible Compensation of Structural and Viscotropic Properties in Hepatic Microsomes and Erythrocyte Membranes of Rats with Essential Fatty Acid Deficiency, J. Lipid Res. 35, 1367–1377.

    PubMed  CAS  Google Scholar 

  11. Orly, J., and Schramm, M. (1975) Fatty Acids as Modulators of Membrane Functions. Catecholamine-activated Adenylate Cyclase of the Turkey Erythrocyte, Proc. Natl. Acad. Sci. USA 72, 3433–3437.

    Article  PubMed  CAS  Google Scholar 

  12. Peluffo, R.O., Nervi, A.M., and Brenner, R.R. (1976) Linoleic Acid Desaturation Activity of Liver Microsomes of Essential Fatty Acid-Deficient and Sufficient Rats, Biochim. Biophys. Acta 441, 25–31.

    PubMed  CAS  Google Scholar 

  13. Brenner, R.R., Garda, H.A., Gomez Dumm, I.N.T. de, and Pezzano, H. (1982) Early Effects of EFA Deficiency on the Structure and Enzymatic Activity of Rat Liver Microsomes, Prog. Lipid Res. 20, 315–321.

    Article  Google Scholar 

  14. Castuma, C.E., and Brenner, R.R. (1983) Effect of Fatty Acid Deficiency on Microsomal Membrane Fluidity and Cooperativity of the UDP-Glucuronyl Transferase, Biochim. Biophys. Acta 729, 9–16.

    Article  PubMed  CAS  Google Scholar 

  15. Castuma, C.E., and Brenner, R.R. (1989) The Influence of Fatty Acid Unsaturation and Physical Properties of Microsomal Membrane Phospholipids on UDP-Glucuronyl Transferase Activity, Biochem. J. 258, 723–731.

    PubMed  CAS  Google Scholar 

  16. Soulages, J.L., and Brenner, R.R. (1987) Effects of Fatty Acid Deficiency on the Lipid Composition and Physical Properties of Guinea Pig Rough Endoplasmic Reticulum, Mol. Cell. Biochem. 78, 109–119.

    Article  PubMed  CAS  Google Scholar 

  17. Soulages, J.L., and Brenner, R.R. (1989) Interactions Among Phospholipids of Guinea Pig Rough Microsomes. Effect of Fat Deficiency, Mol. Cell. Biochem. 90, 127–136.

    Article  PubMed  CAS  Google Scholar 

  18. Rogers, R.R., and Harper, A.E. (1965) Amino Acid Diets and Maximal Growth in the Rat, J. Nutr. 87, 267–273.

    PubMed  CAS  Google Scholar 

  19. Brenner, R.R., Garda, H.A., and Pezzano, H. (1981) The Structure of Rat Microsomal Membrane Studied by Electron Spin Resonance and Arrhenius Curves of Glucose-6-phosphatase, An. Asoc. Quím. Arg. 69, 37–53.

    CAS  Google Scholar 

  20. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  21. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  22. Neskovic, N.M., and Kostic, D.M. (1968) Quantitative Analysis of Rat Liver Phospholipids by a Two-Step Thin-Layer Chromatographic Procedure, J. Chromatogr. 35, 297–509.

    Article  PubMed  CAS  Google Scholar 

  23. Patton, G.M., Fasulo, J.M., and Robins, S.J. (1982) Separation of Phospholipids and Individual Molecular Species of Phospholipids by High-Performance Liquid Chromatography, J. Lipid Res. 23, 190–196.

    PubMed  CAS  Google Scholar 

  24. Kutchai, H., Chandler, L.H., and Zavoico, G.B. (1983) Effects of Cholesterol on Acyl Chain Dynamics in Multilamellar Vesicles of Various Phosphatidylcholines, Biochim. Biophys. Acta 736, 137–149.

    Article  PubMed  CAS  Google Scholar 

  25. Garda, H.A., and Brenner, R.R. (1985) In vitro Modification of Cholesterol Content of Rat Liver Microsomes. Effects upon Membrane “Fluidity” and Activities of Glucose-6-phosphatase and Fatty Acid Desaturation Systems, Biochim. Biophys. Acta 819, 45–54.

    Article  PubMed  CAS  Google Scholar 

  26. Garda, H.A., and Brenner, R.R. (1984) Short-Chain Aliphatic Alcohols Increase Rat-Liver Microsomal Membrane Fluidity and Affect the Activities of Some Microsomal Membrane-Bound Enzymes, Biochim. Biophys. Acta 769, 160–170.

    Article  PubMed  CAS  Google Scholar 

  27. Garda, H.A., Bernasconi, A.M., Brenner, R.R., Aguilar, F., Soto, M.A., and Sotomayor, C.P. (1997) Effect of Polyunsaturated Fatty Acid Deficiency on Dipole Relaxation in the Membrane Interface of Rat Liver Microsomes, Biochim. Biophys. Acta 1323, 97–104.

    Article  PubMed  CAS  Google Scholar 

  28. Axelrod J., and Hirata, F. (1981) Phospholipid Methylation and Membrane Function, Ann. N. Y. Acad. Sci. 373, 51–53.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Garda, H.A., Bernasconi, A.M., Tricerri, M.A. et al. Molecular species of phosphoglycerides in liver microsomes of rats fed a fat-free diet. Lipids 32, 507–513 (1997). https://doi.org/10.1007/s11745-997-0065-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-997-0065-5

Keywords

Navigation