Skip to main content
Log in

Palmitic acid and its role in the structure and functions of plant cell membranes

  • Opinion
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The content of palmitic acid (PA) in the fractions of plant lipids of different polarity were investigated. The following relationship was revealed: when polarity of lipid fraction rose, the content of PA in total fatty acids of this fraction increased. It was shown that in a number of consecutive extracts of total lipids isolated from plant tissue with the same solvent each next extract containing more tightly bound lipids carries more PA. Predominance of this fatty acid within high-polar lipids that may be compared to annular lipids and are indispensable for operation of numerous enzymatic systems are discussed. A considerable quantity of PA was shown in wheat mitochondrial membranes; under cold stress, its level rose even higher. Among phospholipids, the greatest content of PA is usually associated with phosphatidyl inositols, while that among glycolipids is with sulfoquinovosyl diacylglycerols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAG:

diacyl glycerols

DGDG:

digalactosyl diacylglycerols

DPG:

diphosphatidyl glycerols

FA:

fatty acids

FFA:

free fatty acids

GL:

glycolipids

HPL:

high-polar lipids

LPC:

lysophosphatidyl cholines

MAG:

monoacyl glycerols

MGDG:

monogalactosyl diacylglycerols

NL:

neutral lipids

PA:

palmitic acid

PC:

phosphatidylcholines

PE:

phosphatidyl ethanolamines

PI:

phosphatidyl inositols

PG:

phosphatidyl glycerols

PGL:

phytoglycolipids

PhL:

phospholipids

PL:

polar lipids

PS:

phosphatidyl serines

SFA:

saturated fatty acids

SQDG:

sulfoquinovosyl diacylglycerols

TAG:

triacyl glycerols

UFA:

unsaturated fatty acids

References

  1. Zhukov, A.V. and Vereshchagin, A.G., Quantitative content of total polar lipids in soybean seeds, J. Am. Oil Chem. Soc., 1976, vol. 53, pp. 1–7.

    Article  CAS  PubMed  Google Scholar 

  2. Zhukov, A.V. and Vereshchagin, A.G., Characteristics of individual fractions of polar lipids of soybean seeds, Sov. Plant Physiol., 1980, vol. 27, pp. 1288–1292.

    Google Scholar 

  3. Zhukov, A.V., Stefanov, K.L., and Vereshchagin, A.G., The qualitative composition of individual classes of polar lipids from soybean seeds, Sov. Plant Physiol., 1987, vol. 34, pp. 518–527.

    CAS  Google Scholar 

  4. Zhukov, A.V. and Vereshchagin, A.G., Lipid content of the individual fractions in the extract of soybean seeds, Sov. Plant Physiol., 1979, vol. 26, pp. 1288–1292.

    Google Scholar 

  5. Nechaev, A.P. and Sandler, Zh.Ya., Lipidy zerna (Lipids in Seeds), Moscow: Kolos, 1975.

    Google Scholar 

  6. Kates, M., Techniques of Lipidology. Isolation, Analysis and Identification of Lipids, New York: Elsevier, 1972.

    Google Scholar 

  7. Koiwai, A., Suzuki, F., Matsuzaki, T., and Kawashima, N., Changes in glycerolipids and their fatty acid composition during maturation of tobacco seeds, Phytochemistry, 1982, vol. 21, pp. 305–308.

    Article  CAS  Google Scholar 

  8. Harwood, J.L., Lipid synthesis by germinating soya bean, Phytochemistry, 1975, vol. 14, pp. 1985–1990.

    Article  CAS  Google Scholar 

  9. Khor, H.T. and Chan, S.L., Changes in lipid classes and fatty acid composition in developing Psophocarpus tetragonolobus seeds, Phytochemistry, 1988, vol. 27, pp. 2041–2044.

    Article  CAS  Google Scholar 

  10. Wannes, W.A., Mhamdi, B., Sriti, J., and Marzouk, B., Glycerolipid and fatty acid distribution in pericarp, seed and whole fruit oils of Myrtus communis var. italica, Ind. Crop. Prod., 2010, vol. 31, pp. 77–83.

    Article  CAS  Google Scholar 

  11. Serebryakova, O.S., Lipid content and fatty acid composition in pollen of birch main species from the southern part of Republic Karelia, II Vseros. nauch. Internetkonf. “Lipidologiya — nauka XXI veka” (Proc. II AllRussia Sci. Conf. Online “Lipidology — Science of the 21st Century”, November 11, 2014, Kazan), Kazan: Pax Grid Conf., 2014, pp. 94–95.

    Google Scholar 

  12. Lepage, M., Identification and composition of turnip root lipids, Lipids, 1967, vol. 2, pp. 244–250.

    Article  CAS  PubMed  Google Scholar 

  13. Sahoo, D., Jena, K.S., Pout, P.K., and Rao, Y.R., Twostage solvent extraction of seeds of Hibiscus abelmoschus Linn.: lipid and fatty acid compositions, J. Am. Oil Chem. Soc., 2003, vol. 80, pp. 209–211.

    Article  CAS  Google Scholar 

  14. Kundu, M.K., Hladík, J., and Pokorný, J., Pflanzenlipide. 5. Mitt. Zusammensetzung der Sammenlipide einiger Hülsenfrüchte, Food/Nahrung, 1973, vol. 17, no. 8, pp. 785–790.

    Article  CAS  PubMed  Google Scholar 

  15. Grosbois, M., Changes in the amount of complex lipids in the seeds and in the pericarp during the development of ivy fruit (Hedera helix), Physiol. Plant., 1976, vol. 36, pp. 145–149.

    Article  CAS  Google Scholar 

  16. Klyachko-Gurvich, G.L., Yur’eva, M.I., and Semenenko, V.E., The specificity of fatty acid composition in lipid acyl containing unicellular red alga Porphyridium cruentum, Sov. Plant Physiol., 1985, vol. 32, pp. 115–123.

    CAS  Google Scholar 

  17. Ramadan, M.F. and Mörsel, J.-Th., Characterization of phospholipid composition of black cumin (Nigella sativa L.) seed oil, Nahrung/Food, 2002, vol. 46, no. 4, pp. 240–244.

    Article  CAS  PubMed  Google Scholar 

  18. Mulbry, W., Kondrar, S., Buyer, J., and Luthria, D.L., Optimization of an oil extraction process for algae from the treatment of manure effluent, J. Am. Oil Chem. Soc., 2009, vol. 86, pp. 909–915.

    Article  CAS  Google Scholar 

  19. Tsydendambaev, V.D. and Vereshchagin, A.G., Quantitative content of lipids and fatty acid composition in plant somatic storage organs, Prikl. Biokhim. Mikrobiol., 1980, vol. 16, pp. 824–832.

    CAS  Google Scholar 

  20. Belenko, E.L., Datunashvili, E.N., Tsydendambaev, V.D., and Vereshchagin, A.G., Fatty acid composition of lipids in grape, Sov. Plant Physiol., 1983, vol. 30, pp. 1148–1155.

    CAS  Google Scholar 

  21. Shayakhmetova, I.Sh., Trunova, T.I., Tsydendambaev, V.D., and Vereshchagin, A.G., The role of lipids in cell membranes of cryogenic hardening leaves and tillering nodes in winter wheat, Sov. Plant Physiol., 1990, vol. 37, pp. 1186–1195.

    Google Scholar 

  22. Karshiev, Kh., Mukhamedova, Kh.S., and Akramov, S.T., Phospholipid extraction method for cotton seeds, Khim. Prir. Soedin., 1981, no. 5, pp. 294–300.

    Google Scholar 

  23. Sriti, J., Wannes, W.A., Talou, T., Mhamdi, B., Hamdaoui, G., and Marzouk, B., Lipid, fatty acid and tocol distribution of coriander fruit’s different parts, Ind. Crop. Prod., 2010, vol. 31, pp. 294–300.

    Article  CAS  Google Scholar 

  24. Sanina, N.M., Goncharova, S.N., and Kostetsky, E.Y., Fatty acid composition of individual polar lipid classes from marine macrophytes, Phytochemistry, 2004, vol. 65, pp. 721–730.

    Article  CAS  PubMed  Google Scholar 

  25. O’Brien, J.S. and Benson, A.A., Isolation and fatty acid composition of the plant sulfolipid and galactolipids, J. Lipid Res., 1964, vol. 5, pp. 432–456.

    PubMed  Google Scholar 

  26. Isamukhamedov, A.Sh., Shustanova, L.A., and Akramov, S.T., The structure of the phospholipids in cotton and positional specificity of fatty acids, Khim. Prir. Soedin., 1976, no. 1, pp. 22–26.

    Google Scholar 

  27. Haydar, M. and Hadziyev, D., Pea lipids and their oxidation on carbohydrate and protein matrices, J. Food Sci., 1973, vol. 38, pp. 772–778.

    Article  Google Scholar 

  28. Álvarez-Ortega, R., Cantisán, S., Martinez-Force, E., and Garcés, R., Characterization of polar and nonpolar seed lipid classes from highly saturated fatty acid sunflower mutants, Lipids, 1997, vol. 32, pp. 833–873.

    Article  PubMed  Google Scholar 

  29. Stefanov, K.L., Yanishlieva, N.V., Zhukov, A.V., Tsydendambaev, V.D., Pchelkin, V.P., and Vereshchagin, A.G., Effect of accelerated aging on the content and fatty acid composition of free and bound lipids in sunflower seeds, Prikl. Biokhim. Mikrobiol., 1987, vol. 23, pp. 472–477.

    CAS  Google Scholar 

  30. Kuiper, P.J.C., Lipids in alfalfa leaves in relation to cold hardiness, Plant Physiol., 1970, vol. 45, pp. 684–686.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Yoshida, H., Tomiyama, Y., Yoshida, N., and Mizushina, Y., Characteristics of lipid components, fatty acid distribution and triacylglycerol molecular species of adzuki beans (Vigna angularis), Food Chem., 2009, vol. 115, pp. 1424–1429.

    Article  CAS  Google Scholar 

  32. Yoshida, H., Yoshida, N., Kuriyama, I., Tomiyama-Sakamoto, Y., and Mizushina, Y., Profiles of lipid components, fatty acid distributions of tryacylglycerols and phospholipids in Jack beans (Canavalia gladiata DC.), Food Chem., 2013, vol. 136, pp. 807–812.

    Article  CAS  PubMed  Google Scholar 

  33. Yoshida, H., Tanigawa, T., Yoshida, N., Kuriyama, I., Tomiyama, Y., and Mizushina, Y., Lipid components, fatty acid distributions of triacylglycerols and phospholipids in rice brans, Food Chem., 2011, vol. 129, pp. 479–484.

    Article  CAS  Google Scholar 

  34. Yoshida, H., Saiki, M., Yoshida, N., Tomiyama, Y., and Mizushina, Y., Fatty acid distribution in triacylglycerols and phospholipids of broad beans (Vicia faba), Food Chem., 2009, vol. 112, pp. 924–928.

    Article  CAS  Google Scholar 

  35. Chapman, D.J., de Felice, J., and Barber, J., Polar lipid composition of chloroplast thylakoid isolated from leaves grown under different lighting conditions, Photosynth. Res., 1986, vol. 8, pp. 257–265.

    Article  CAS  PubMed  Google Scholar 

  36. Melo, N., Tavares, R.M., Morais, F., Barroso, J.G., and Pais, V.S.S., Lipid composition of thylakoid membranes from leaves and regreened spathes of Zantedeschia aethiopica, Phytochemistry, 1995, vol. 40, pp. 1367–1371.

    Article  CAS  Google Scholar 

  37. Xye, C., Hu, Y., Saito, H., Zhang, Z., Li, Z., Cai, Y., Ou, C., Lin, H., and Imbs, A.B., Molecular species composition of glycolipids from Spirulina platensis, Food Chem., 2002, vol. 77, pp. 9–13.

    Article  Google Scholar 

  38. Fishwick, M.J. and Wright, A.J., Isolation and characterization of amyloplast envelope membranes from Solanum tuberosum, Phytochemistry, 1980, vol. 19, pp. 55–59.

    Article  CAS  Google Scholar 

  39. Chen, G.Q., Jiang, Y., and Chen, F., Fatty acid and lipid class composition of the eicosapentaenoic acidproducing microalga, Nitzschia laevis, Food Chem., 2007, vol. 104, pp. 1580–1585.

    Article  CAS  Google Scholar 

  40. Dobson, G., Leaf lipids of Ribes nigrum: a plant containing 16:3, α-18:3, γ-18:3, and 18:4 fatty acids Proc. 14th Int. Symp. on Plant Lipids. Recent Advances in the Biochemistry of Plant Lipids, Harwood, J.L. and Quin, P.J., Eds., London: Portland, 2000, pp. 583–586.

    Google Scholar 

  41. Risov, I. and Doulis, A., Determination of glycerolipid composition of rice and maize tissues using solidphase extraction, Proc. 14th Int. Symp. on Plant Lipids. Recent Advances in the Biochemistry of Plant Lipids, Harwood, J.L. and Quin, P.J., Eds., London: Portland, 2000, pp. 586–589.

    Google Scholar 

  42. Khor, H.T., Lipids and fatty acid composition of developing winged bean seeds, Phytochemistry, 1985, vol. 24, pp. 856–857.

    Article  CAS  Google Scholar 

  43. Doronina, O.D., Study of composition, structure and the initial stages of biosynthesis of some glycerolipids in wheat and maize, Cand. Sci. (Chem.) Dissertation, Moscow: Tekhnol. Inst. Pishch. Prom., 1977.

    Google Scholar 

  44. Carballeira, M.J., Martin, L., Nicolas, G., and Villalobos, N., Analysis of lipids and fatty acids during the germination of Brassica campestris cv. esculenta seeds, Plant Sci., 1987, vol. 48, pp. 181–188.

    Article  Google Scholar 

  45. Yoshida, H. and Kajimoto, G., Changes in glycolipid and phospholipid composition in cotyledons of germinating soybeans, Agric. Biol. Chem., 1977, vol. 41, pp. 1857–1863.

    Article  CAS  Google Scholar 

  46. Vereshchagin, A.G., Lebedeva, N.L., and Zhukov, A.V., Content and composition of the esterified fatty acids in mitochondria of wheat etiolated seedlings, Sov. Plant Physiol., 1985, vol. 32, pp. 124–129.

    CAS  Google Scholar 

  47. Vereshchagin, A.G., Lebedeva, N.L., Zhukov, A.V., and Chel’tsova, L.P., Content and composition of the esterified fatty acids in mitochondria of wheat seedlings after seed vernalization, Sov. Plant Physiol., 1985, vol. 32, pp. 361–367.

    CAS  Google Scholar 

  48. Zhigalova, T.V., Chivkunova, O.B., and Merzlyak, M.M., Effect of water stress on fatty acids of chloroplasts in Saratovskaya 55 and Lutescence 1848 var. wheat seedling, in Biological Role of Plant Lipids, Biach, P.A., Gruiz, K., and Kremer, T., Eds., Budapest: Akadémiai Kiadó, 1989, pp. 267–269.

    Chapter  Google Scholar 

  49. Ouedraogo, M., Tremolieres, A., and Hubac, C., Change in fatty acid composition during water stress in cotton plants. Relation with drought resistance induced by far red light, Z. Pflanzenphysiol., 1984, vol. 114, pp. 234–245.

    Article  Google Scholar 

  50. Hirayama, O. and Mihara, M., Characterization of membrane lipids of higher plants different in salt-tolerance, Agric. Biol. Chem., 1987, vol. 51, pp. 3215–3221.

    Article  CAS  Google Scholar 

  51. Morita, N., Nakazato, H., Okuyama, H., Kim, Y., and Thompson, G.A., ffixJr., Glycosylphosphatidylinositolanchored proteins in plants, in Physiology, Biochemistry and Molecular Biology of Plant Lipids, Williams, J.P., Khan, M.U., and Lem, N.W., Eds., Dordrecht: Kluwer, 1997, pp. 160–162.

    Chapter  Google Scholar 

  52. _Biokhimiya (Biochemistry), Severin, E.S., Ed., Moscow: GEOTAR-Media, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zhukov.

Additional information

Original Russian Text © A.V. Zhukov, 2015, published in Fiziologiya Rastenii, 2015, Vol. 62, No. 5, pp. 751–760.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, A.V. Palmitic acid and its role in the structure and functions of plant cell membranes. Russ J Plant Physiol 62, 706–713 (2015). https://doi.org/10.1134/S1021443715050192

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443715050192

Keywords

Navigation