Skip to main content
Log in

Variations in the Size and ζ-Potential of Phosphatidylcholine Liposomes with Incorporated Nutriceuticals in the Course of their Initiated Oxidation

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Phosphatidylcholine (PC) liposomes are widely used as models of living cell biomembranes for studying various biochemical processes proceeding in them, in particular, lipid peroxidation (LPO) and effects of different substances on this process. In this work, dynamic light scattering has been employed to study the dynamics of variations in the sizes and ζ-potentials of soybean PC liposomes during their oxidation at 37°С initiated by 2,2'-azobis(amidinopropane) dihydrochloride. The effects of α-linoleic acid and carnation essential oil incorprated into the liposomes, as well as the encapsulation of the liposomes with sodium caseinate, on these parameters have been investigated. It has been found that the average size of PC liposomes increases by 6–7% in the course of oxidation; however, no correlation between their sizes and accumulation of LPO products has been revealed. By the end of the oxidation, the absolute value of the ζ potential increases by three times. The inclusion of α-linoleic acid into liposomes substantially changes the dynamics of variations in their sizes and ζ potential. The presence of carnation essential oil in liposomes decreases the accumulation of conjugated dienes during the oxidation and stabilizes the sizes and ζ-potentials by the end of oxidation for both original liposomes and liposomes containing α-linoleic acid. Encapsulation of liposomes with sodium caseinate stabilizes the sizes and ζ-potentials of complex structures formed in the course of oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Thomas, A.H., Catala, A., and Vignoni, M., Biochim. Biophys. Acta, 2016, vol. 1858, p. 139.

    Article  CAS  Google Scholar 

  2. Poon, H.F., Calabrese, V., Scapagnini, G., and Butterfield, D.A., J. Gerontol. A,Biol. Med. Sci., 2004, vol. 59, p. 478.

    Google Scholar 

  3. Spiteller, G., Med. Hypotheses, 2003, vol. 60, p. 69.

    Article  Google Scholar 

  4. Soto-Arriaza, M.A., Sotomayor, C.P., and Lissi, E.A., J. Colloid Interface Sci., 2008, vol. 323, p. 79.

    Article  Google Scholar 

  5. Pinchuk, I. and Lichtenberg, D., Chem. Phys. Lipids, 2014, vol. 178, p. 63.

    Article  CAS  Google Scholar 

  6. Gal, S., Pinchuk, I., and Lichtenberg, D., Chem. Phys. Lipids, 2003, vol. 126, p. 95.

    Article  CAS  Google Scholar 

  7. Semenova, M.G., Antipova, A.S., Belyakova, L.E., Polikarpov, Yu.N., Anokhina, M.S., Grigorovich, N.V., and Moiseenko, D.V., Food Hydrocolloids, 2014, vol. 42, p. 149.

    Article  CAS  Google Scholar 

  8. Semenova, M.G., Antipova, A.S., Zelikina, D.V., Martirosova, E.I., Plashchina, I.G., Palmina, N.P., Binyukov, V.I., Bogdanova, N.G., Kasparov, V.V., Shumilina, E.A., and Ozerova, N., Food Res. Int., 2016, vol. 88, p. 70.

    Article  CAS  Google Scholar 

  9. Semenova, M.G., Zelikina, D.V., Antipova, A.S., Martirosova, E.I., Grigorovich, N.V., Obushaeva, R.A., Shumilina, E.A., Ozerova, N.S., Palmina, N.P., Maltseva, E.L., Kasparov, V.V., Bogdanova, N.G., and Krivandin, F.V., Food Hydrocolloids, 2016, vol. 52, p. 144.

    Article  CAS  Google Scholar 

  10. Semenova, M.G., Antipova, A.S., Misharina, T.A., Alinkina, E.S., Zelikina, D.V., Martirosova, E.I., Palmina, N.P., Binyukov, V.I., Maltseva, E.L., Kasparov, V.V., Ozerova, N.S., Shumilina, E.A., Baeva, K.A., and Bogdanova, N.G., in Gums and Stabilizers for the Food Industry 18: Hydrocolloid Functionality for Affordable and Sustainable Global Food Solutions, Williams, P.A. and Phillips, G., Eds., Cambridge: Royal Soc. Chem., 2016, p. 182.

    Google Scholar 

  11. Semenova, M.G., Food Hydrocolloids, 2017, vol. 68, p. 114.

    Article  CAS  Google Scholar 

  12. Sazhina, N.N., Antipova, A.S., Semenova, M.G., and Palmina, N.P., Russ. J. Bioorg. Chem., 2019, vol. 45, p. 34.

    Article  CAS  Google Scholar 

  13. Mosca, M., Cerlie, A., and Ambrosone, L., Chem. Phys. Lipids, 2011, vol. 164, p. 158.

    Article  CAS  Google Scholar 

  14. Neves, A.R., Nunes, C., Amenitsch, H., and Reis, S., Soft Matter, 2016, vol. 12, p. 2118.

    Article  CAS  Google Scholar 

  15. Azouzi, S., Santuz, H., Vorandat, S., Pereira, C., Cote, F., Hermine, O., Kirat, K.E., Colin, Y., Kim, C., Etchebest, C., and Amereault, P., Biophys. J., 2017, vol. 112, p. 1863.

    Article  CAS  Google Scholar 

  16. Werber, J., Wang, Y.J., Milligan, M., Li, X., and Ji, J.A., J. Pharm. Sci., 2011, vol. 100, p. 3307.

    Article  CAS  Google Scholar 

  17. Schnitzer, E., Pinchuk, I., and Lichtenberg, D., Eur. Biophys. J., 2007, vol. 36, p. 499.

    Article  CAS  Google Scholar 

  18. De Rosa, R., Spinozzi, F., and Itri, R., Biochim. Biophys. Acta, 2018, vol. 1860, p. 2299.

    Article  Google Scholar 

  19. Singh, J. and Ranganathan, R., Biochim.Biophys. Acta—Biomembr., 2015, vol. 1848, p. 1472.

    Google Scholar 

  20. Istarova, T.A., Semenova, M.G., Sorokoumova, G.M., Selishcheva, A.A., Belyakova, L.E., Polikarpov, Yu.N., and Anokhina, M.S., Food Hydrocolloids, 2005, vol. 19, p. 429.

    Article  CAS  Google Scholar 

  21. Tsubone, T.M., Junqueira, H.C., Baptista, M.S., and Itri, R., Biochim.Biophys. Acta—Biomembr., 2019, vol. 1861, p. 660.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Sazhina.

Ethics declarations

The authors declare that they have no conflict of intere-st.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazhina, N.N., Plashchina, I.G., Semenova, M.G. et al. Variations in the Size and ζ-Potential of Phosphatidylcholine Liposomes with Incorporated Nutriceuticals in the Course of their Initiated Oxidation. Colloid J 82, 69–75 (2020). https://doi.org/10.1134/S1061933X20010159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20010159

Navigation