Skip to main content
Log in

Lipid Transfer to HDL is Higher in Marathon Runners than in Sedentary Subjects, but is Acutely Inhibited During the Run

  • Original Article
  • Published:
Lipids

Abstract

Although exercise increases HDL-cholesterol, exercise-induced changes in HDL metabolism have been little explored. Lipid transfer to HDL is essential for HDL’s role in reverse cholesterol transport. We investigated the effects of acute exhaustive exercise on lipid transfer to HDL. We compared plasma lipid, apolipoprotein and cytokine levels and in vitro transfer of four lipids from a radioactively labeled lipid donor nanoemulsion to HDL in sedentary individuals (n = 28) and in marathon runners (n = 14) at baseline, immediately after and 72 h after a marathon. While HDL-cholesterol concentrations and apo A1 levels were higher in marathon runners, LDL-cholesterol, apo B and triacylglycerol levels were similar in both groups. Transfers of non-esterified cholesterol [6.8 (5.7–7.2) vs. 5.2 (4.5–6), p = 0.001], phospholipids [21.7 (20.4–22.2) vs. 8.2 (7.7–8.9), p = 0.0001] and triacylglycerol [3.7 (3.1–4) vs. 1.3 (0.8–1.7), p = 0.0001] were higher in marathon runners, but esterified-cholesterol transfer was similar. Immediately after the marathon, LDL- and HDL-cholesterol concentrations and apo A1 levels were unchanged, but apo B and triacylglycerol levels increased. Lipid transfer of non-esterified cholesterol [6.8 (5.7–7.2) vs. 5.8 (4.9–6.6), p = 0.0001], phospholipids [21.7 (20.4–22.2) vs. 19.1 (18.6–19.3), p = 0.0001], esterified-cholesterol [3.2 (2.2–3.8) vs. 2.3 (2–2.9), p = 0.02] and triacylglycerol [3.7 (3.1–4) vs. 2.6 (2.1–2.8), p = 0.0001] to HDL were all reduced immediately after the marathon but returned to baseline 72 h later. Running a marathon increased IL-6 and TNF-α levels, but after 72 h these values returned to baseline. Lipid transfer, except esterified-cholesterol transfer, was higher in marathon runners than in sedentary individuals, but the marathon itself acutely inhibited lipid transfer. In light of these novel observations, further study is required to clarify how these metabolic changes can influence HDL composition and anti-atherogenic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

HDL-C:

High-density lipoprotein cholesterol

LDL-C:

Low-density lipoprotein cholesterol

VLDL:

Very low-density lipoprotein

IDL:

Intermediate-density lipoprotein

Apo:

Apolipoprotein

CETP:

Cholesteryl ester transfer protein

PLTP:

Phospholipid transfer protein

NEC:

Non-esterified cholesterol

EC:

Esterified cholesterol

PL:

Phospholipids

TAG:

Triacylglycerol(s)

IL:

Interleukin

TNF:

Tumor necrosis factor

CHD:

Coronary heart disease

PON:

Paraoxonase

BMI:

Body mass index

NaCl:

Sodium chloride

KBr:

Potassium bromide

References

  1. Kokkinos P, Sheriff H, Kheirbek R (2011) Physical inactivity and mortality risk. Cardiol Res Pract 2011:924945. doi:10.4061/2011/924945

    PubMed  Google Scholar 

  2. Meissner M, Nijstad N, Kuipers F, Tietge UJ (2010) Voluntary exercise increases cholesterol efflux but not macrophage reverse cholesterol transport in vivo in mice. Nutr Metab (Lond) 7:54. doi:10.1186/1743-7075-7-54

    Article  Google Scholar 

  3. Kobayashi Y, Takeuchi T, Hosoi T, Yoshizaki H, Loeppky JA (2005) Effect of a marathon run on serum lipoproteins, creatine kinase, and lactate dehydrogenase in recreational runners. Res Q Exerc Sport 76:450–455

    Article  PubMed  Google Scholar 

  4. Ring-Dimitriou S, von Duvillard SP, Paulweber B, Stadlmann M, Lemura LM, Peak K, Mueller E (2007) Nine months aerobic fitness induced changes on blood lipids and lipoproteins in untrained subjects versus controls. Eur J Appl Physiol 99:291–299

    Article  PubMed  CAS  Google Scholar 

  5. Tambalis K, Panagiotakos DB, Kavouras SA, Sidossis LS (2009) Responses of blood lipids to aerobic, resistance, and combined aerobic with resistance exercise training: a systematic review of current evidence. Angiology 60:614–632

    Article  PubMed  Google Scholar 

  6. Herzberg GR (2004) Aerobic exercise, lipoproteins, and cardiovascular disease: benefits and possible risks. Can J Appl Physiol 29:800–807

    Article  PubMed  CAS  Google Scholar 

  7. Serrat-Serrat J, Ordonez-Llanos J, Serra-Grima R, Gomez-Gerique JA, Pellicer-Thoma E, Payes-Romero A, Gonzalez-Sastre F (1993) Marathon runners presented lower serum cholesteryl ester transfer activity than sedentary subjects. Atherosclerosis 101:43–49

    Article  PubMed  CAS  Google Scholar 

  8. Skinner ER, Watt C, Maughan RJ (1987) The acute effect of marathon running on plasma lipoproteins in female subjects. Eur J Appl Physiol Occup Physiol 56:451–456

    Article  PubMed  CAS  Google Scholar 

  9. Mohlenkamp S, Lehmann N, Breuckmann F, Brocker-Preuss M, Nassenstein K, Halle M, Budde T, Mann K, Barkhausen J, Heusch G, Jockel KH, Erbel R (2008) Running: the risk of coronary events: Prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J 29:1903–1910

    Article  PubMed  Google Scholar 

  10. Mathur N, Pedersen BK (2008) Exercise as a mean to control low-grade systemic inflammation. Mediators Inflamm 2008:109502

    Article  PubMed  Google Scholar 

  11. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406

    Article  PubMed  CAS  Google Scholar 

  12. Landi F, Russo A, Cesari M, Pahor M, Bernabei R, Onder G (2007) HDL-cholesterol and physical performance: results from the ageing and longevity study in the Sirente geographic area (ilSIRENTE Study). Age Ageing 36:514–520

    Article  PubMed  Google Scholar 

  13. Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, French BC, Phillips JA, Mucksavage ML, Wilensky RL, Mohler ER, Rothblat GH, Rader DJ (2011) Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 364:127–135

    Article  PubMed  CAS  Google Scholar 

  14. Heinecke J (2011) HDL and cardiovascular-disease risk–time for a new approach? N Engl J Med 364:170-171

    Google Scholar 

  15. von Eckardstein A, Nofer JR, Assmann G (2001) High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 21:13–27

    Article  Google Scholar 

  16. Meyers CD, Kashyap ML (2004) Pharmacologic elevation of high-density lipoproteins: recent insights on mechanism of action and atherosclerosis protection. Curr Opin Cardiol 19:366–373

    Article  PubMed  Google Scholar 

  17. Wang M, Briggs MR (2004) HDL: the metabolism, function, and therapeutic importance. Chem Rev 104:119–137

    Article  PubMed  CAS  Google Scholar 

  18. Kontush A, Chapman MJ (2011) Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol 21:312–318

    Article  Google Scholar 

  19. Tall A (1995) Plasma lipid transfer proteins. Annu Rev Biochem 64:235–257

    Article  PubMed  CAS  Google Scholar 

  20. Chapman MJ, Le Goff W, Guerin M, Kontush A (2011) Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors. Eur Heart J 31:149–164

    Article  Google Scholar 

  21. Maranhao RC, Roland IA, Hirata MH (1990) Effects of Triton WR 1339 and heparin on the transfer of surface lipids from triglyceride-rich emulsions to high density lipoproteins in rats. Lipids 25:701–705

    Article  PubMed  CAS  Google Scholar 

  22. Maranhao RC, Cesar TB, Pedroso-Mariani SR, Hirata MH, Mesquita CH (1993) Metabolic behavior in rats of a nonprotein microemulsion resembling low-density lipoprotein. Lipids 28:691–696

    Article  PubMed  CAS  Google Scholar 

  23. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    PubMed  CAS  Google Scholar 

  24. Ginsburg GS, Small DM, Atkinson D (1982) Microemulsions of phospholipids and cholesterol esters. Protein-free models of low density lipoprotein. J Biol Chem 257:8216–8227

    PubMed  CAS  Google Scholar 

  25. Lo Prete AC, Dina CH, Azevedo CH, Puk CG, Lopes NH, Hueb WA, Maranhao RC (2009) In vitro simultaneous transfer of lipids to HDL in coronary artery disease and in statin treatment. Lipids 44:917–924

    Article  PubMed  CAS  Google Scholar 

  26. Kratz A, Lewandrowski KB, Siegel AJ, Chun KY, Flood JG, Van Cott EM, Lee-Lewandrowski E (2002) Effect of marathon running on hematologic and biochemical laboratory parameters, including cardiac markers. Am J Clin Pathol 118:856–863

    Article  PubMed  CAS  Google Scholar 

  27. Durstine JL, Grandjean PW, Cox CA, Thompson PD (2002) Lipids, lipoproteins, and exercise. J Cardiopulm Rehabil 22:385–398

    Article  PubMed  Google Scholar 

  28. Mackinnon LT, Hubinger LM (1999) Effects of exercise on lipoprotein(a). Sports Med 28:11–24

    Article  PubMed  CAS  Google Scholar 

  29. Angelopoulos TJ, Sivo SA, Kyriazis GA, Caplan JD, Zoeller RF, Lowndes J, Seip RL, Thompson PD (2007) Do age and baseline LDL cholesterol levels determine the effect of regular exercise on plasma lipoprotein cholesterol and apolipoprotein B levels? Eur J Appl Physiol 101:621–628

    Article  PubMed  CAS  Google Scholar 

  30. Graham TE (2004) Exercise, postprandial triacylglyceridemia, and cardiovascular disease risk. Can J Appl Physiol 29:781–799

    Article  PubMed  CAS  Google Scholar 

  31. Lamon-Fava S, McNamara JR, Farber HW, Hill NS, Schaefer EJ (1989) Acute changes in lipid, lipoprotein, apolipoprotein, and low-density lipoprotein particle size after an endurance triathlon. Metabolism 38:921–925

    Article  PubMed  CAS  Google Scholar 

  32. Skinner ER, Black D, Maughan RJ (1985) Variability in the response of different male subjects to the effect of marathon running on the increase in plasma high density lipoprotein. Eur J Appl Physiol Occup Physiol 54:488–493

    Article  PubMed  CAS  Google Scholar 

  33. Wu HJ, Chen KT, Shee BW, Chang HC, Huang YJ, Yang RS (2004) Effects of 24 h ultra-marathon on biochemical and hematological parameters. World J Gastroenterol 10:2711–2714

    PubMed  CAS  Google Scholar 

  34. Tzotzas T, Desrumaux C, Lagrost L (2009) Plasma phospholipid transfer protein (PLTP): review of an emerging cardiometabolic risk factor. Obes Rev 10:403–411

    Article  PubMed  CAS  Google Scholar 

  35. Chatterjee C, Sparks DL (2011) Hepatic lipase, high density lipoproteins, and hypertriglyceridemia. Am J Pathol 178:1429–1433

    Article  PubMed  CAS  Google Scholar 

  36. Azevedo CH, Wajngarten M, Prete AC, Diament J, Maranhao RC (2011) Simultaneous transfer of cholesterol, triglycerides, and phospholipids to high-density lipoprotein in aging subjects with or without coronary artery disease. Clinics (Sao Paulo) 66:1543–1548

    Google Scholar 

  37. Maranhao RC, Freitas FR, Strunz CM, Santos RD, Mansur AJ, Mansur AP (2011) Lipid transfers to HDL are predictors of precocious clinical coronary heart disease. Clin Chim Acta 413:502–505

    Article  PubMed  Google Scholar 

  38. Goodyear LJ, Van Houten DR, Fronsoe MS, Rocchio ML, Dover EV, Durstine JL (1990) Immediate and delayed effects of marathon running on lipids and lipoproteins in women. Med Sci Sports Exerc 22:588–592

    Article  PubMed  CAS  Google Scholar 

  39. Foger B, Wohlfarter T, Ritsch A, Lechleitner M, Miller CH, Dienstl A, Patsch JR (1994) Kinetics of lipids, apolipoproteins, and cholesteryl ester transfer protein in plasma after a bicycle marathon. Metabolism 43:633–639

    Article  PubMed  CAS  Google Scholar 

  40. Goncalves RP, Hungria VT, Chiattone CS, Pozzi DB, Maranhao RC (2003) Metabolism of chylomicron-like emulsions in patients with Hodgkin’s and with non-Hodgkin’s lymphoma. Leuk Res 27:147–153

    Article  PubMed  CAS  Google Scholar 

  41. Rubin DA, Hackney AC (2010) Inflammatory cytokines and metabolic risk factors during growth and maturation: influence of physical activity. Med Sport Sci 55:43–55

    Article  PubMed  CAS  Google Scholar 

  42. Szostak J, Laurant P (2011) The forgotten face of regular physical exercise: a ‘natural’ anti-atherogenic activity. Clin Sci (Lond) 121:91–106

    Article  Google Scholar 

  43. Pedersen BK, Steensberg A, Schjerling P (2001) Exercise and interleukin-6. Curr Opin Hematol 8:137–141

    Article  PubMed  CAS  Google Scholar 

  44. Nieman DC, Henson DA, Smith LL, Utter AC, Vinci DM, Davis JM, Kaminsky DE, Shute M (2001) Cytokine changes after a marathon race. J Appl Physiol 91:109–114

    PubMed  CAS  Google Scholar 

  45. Eder K, Baffy N, Falus A, Fulop AK (2009) The major inflammatory mediator interleukin-6 and obesity. Inflamm Res 58:727–736

    Article  PubMed  CAS  Google Scholar 

  46. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V (2000) Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 148:209–214

    Article  PubMed  CAS  Google Scholar 

  47. Morisset AS, Huot C, Legare D, Tchernof A (2008) Circulating IL-6 concentrations and abdominal adipocyte isoproterenol-stimulated lipolysis in women. Obesity (Silver Spring) 16:1487–1492

    Article  CAS  Google Scholar 

  48. Nomura K, Noguchi Y, Yoshikawa T, Kondo J (1997) Plasma interleukin-6 is not a mediator of changes in lipoprotein lipase activity in cancer patients. Hepatogastroenterology 44:1519–1526

    PubMed  CAS  Google Scholar 

  49. Wu G, Brouckaert P, Olivecrona T (2004) Rapid downregulation of adipose tissue lipoprotein lipase activity on food deprivation: evidence that TNF-alpha is involved. Am J Physiol Endocrinol Metab 286:E711–E717

    Article  PubMed  CAS  Google Scholar 

  50. Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB (1995) The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 95:2111–2119

    Article  PubMed  CAS  Google Scholar 

  51. Seip RL, Moulin P, Cocke T, Tall A, Kohrt WM, Mankowitz K, Semenkovich CF, Ostlund R, Schonfeld G (1993) Exercise training decreases plasma cholesteryl ester transfer protein. Arterioscler Thromb 13:1359–1367

    Article  PubMed  CAS  Google Scholar 

  52. Cheung MC, Brown BG, Marino Larsen EK, Frutkin AD, O’Brien KD, Albers JJ (2006) Phospholipid transfer protein activity is associated with inflammatory markers in patients with cardiovascular disease. Biochim Biophys Acta 1762:131–137

    PubMed  CAS  Google Scholar 

  53. Jahangiri A (2010) High-density lipoprotein and the acute phase response. Curr Opin Endocrinol Diabetes Obes 17:156–160

    Article  PubMed  CAS  Google Scholar 

  54. Navab M, Berliner JA, Subbanagounder G, Hama S, Lusis AJ, Castellani LW, Reddy S, Shih D, Shi W, Watson AD, Van Lenten BJ, Vora D, Fogelman AM (2001) HDL and the inflammatory response induced by LDL-derived oxidized phospholipids. Arterioscler Thromb Vasc Biol 21:481–488

    Article  PubMed  CAS  Google Scholar 

  55. Navab M, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Fogelman AM (2009) HDL as a biomarker, potential therapeutic target, and therapy. Diabetes 58:2711–2717

    Article  PubMed  CAS  Google Scholar 

  56. Van Lenten BJ, Wagner AC, Navab M, Fogelman AM (2001) Oxidized phospholipids induce changes in hepatic paraoxonase and ApoJ but not monocyte chemoattractant protein-1 via interleukin-6. J Biol Chem 276:1923–1929

    Article  PubMed  Google Scholar 

  57. Magkos F, Wright DC, Patterson BW, Mohammed BS, Mittendorfer B (2006) Lipid metabolism response to a single, prolonged bout of endurance exercise in healthy young men. Am J Physiol Endocrinol Metab 290:E355–E362

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Jeferson Silva for contributing to the discussion of the manuscript. This study was supported by the Fundação de Amparo à Pesquisa de São Paulo (FAPESP), São Paulo, Brazil. Prof. Maranhão has a research grant from the Conselho Nacional de Desenvolvimanto Cientifico e Tecnológico (CNPq, 475819/2010-1), Brasília, Brazil.

Conflict of interest

All the authors participated in the design of the study, interpretation of the data and writing of the manuscript. The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul C. Maranhão.

About this article

Cite this article

Vaisberg, M., Bachi, A.L.L., Latrilha, C. et al. Lipid Transfer to HDL is Higher in Marathon Runners than in Sedentary Subjects, but is Acutely Inhibited During the Run. Lipids 47, 679–686 (2012). https://doi.org/10.1007/s11745-012-3685-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-012-3685-y

Keywords

Navigation