Skip to main content
Log in

Metabolic behavior in rats of a nonprotein microemulsion resembling low-density lipoprotein

  • Article
  • Published:
Lipids

Abstract

A protein-free microemulsion (LDE) with a lipid composition resembling that of low-density lipoprotein (LDL) was used in metabolic studies in rats to compare LDE with the native lipoprotein. LDE labeled with radioactive lipids was injected into the bloodstream of male Wistar rats, and plasma kinetics of the labeled lipids were followed on plasma samples collected at regular intervals for 12 h after injection. The 24-h LDE uptake by different tissues was also measured in tissue samples excised after the animals had been sacrificed. We found that LDE plasma kinetics were similar to those described for native LDL [fractional clearance rate (FCR) of cholesteryl ester, 0.42±0.11 h−1]. The major site for LDE uptake was the liver, and the tissue distribution of the LDE injected radioactivity was as one would expect for LDL. To test whether LDE was taken up by the specific LDL receptors, the LDE emulsion was injected into rats treated with 17α-ethinylestradiol, which is known to increase the activity of these receptors; as expected, removal of LDE from the bloodstream increased (FCR=0.90±0.35 h−1). On the other hand, saturation of the receptors that remove remnants by prior infusion of massive amounts of lymph chylomicrons did not change LDE plasma kinetics. These results indicate that LDE is cleared from plasma by B,E receptors and not by the E receptors that remove remnants. Incorporation of free cholesterol into LDE increased LDE plasma clearance. Incubation studies also showed that LDE incorporates a variety of apolipoproteins, including apo E, a ligand for recognition of lipoproteins by specific receptors. Our data suggest that LDE can be a useful tool to test LDL metabolism and B,E receptor function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AML:

acute myeloid leukemia

LDE:

microemulsion resembling low-density lipoprotein

LDL:

low-density lipoprotein

TLC:

thin-layer chromatography

VLDL:

very low density lipoprotein

References

  1. Brown, M.S., and Goldstein, J.L. (1986)Science 232, 34–47.

    Article  PubMed  CAS  Google Scholar 

  2. Redgrave, T.G., and Maranhão, R.C. (1985)Biochim. Biophys. Acta 835, 104–112.

    PubMed  CAS  Google Scholar 

  3. Maranhão, R.C., Tercyak, A.M., and Redgrave, T.G. (1986)Biochim. Biophys. Acta 875, 247–255.

    PubMed  Google Scholar 

  4. Redgrave, T.G., Maranhão, R.C., Tercyak, A.M., Lincoln, E.C., and Brunengraber, H. (1988)Lipids 23, 101–105.

    PubMed  CAS  Google Scholar 

  5. Ginsburg, G.S., Small, D.M., and Atkinson, D. (1982)J. Biol. Chem. 257, 8216–8227.

    PubMed  CAS  Google Scholar 

  6. Tilley, Q.L., Sawyer, W.H., Looney, F., and Curtain, C.C. (1990)Biochim. Biophys. Acta 1042, 42–50.

    Google Scholar 

  7. Reisinger, R.E., and Atkinson, D. (1990)J. Lipid Res. 31, 849–858.

    PubMed  CAS  Google Scholar 

  8. Bartlett, G.R. (1959)J. Biol. Chem. 234, 466–468.

    PubMed  CAS  Google Scholar 

  9. Zlatkis, A., and Zak, B. (1969)Anal. Biochem. 29, 143–148.

    Article  PubMed  CAS  Google Scholar 

  10. Soloni, F.G. (1971)Clin. Chem. 17, 529–533.

    PubMed  CAS  Google Scholar 

  11. Chao, Y., Windler, E.E., Chen, G.C., and Havel, R.J. (1979)J. Biol. Chem. 254, 11360–11366.

    PubMed  CAS  Google Scholar 

  12. Dory, L., and Roheim, P.S. (1981)J. Lipid Res. 22, 287–296.

    PubMed  CAS  Google Scholar 

  13. Folch, J., Lees, M., and Sloane-Stanley, G.H.S. (1957)J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  14. Kobayashi, Y., and Mausdley, D.V. (1974)Biological Applications of Liquid Scintillation Counting, p. 51, Academic Press, New York.

    Google Scholar 

  15. Redgrave, T.G., and Snibson, D.A. (1977)Metabolism 26, 493–503.

    Article  PubMed  CAS  Google Scholar 

  16. Oliveira, H.C.F., Hirata, M.H., Redgrave, T.G., and Maranhao, R.C. (1988)Biochem. Biophys. Acta 958, 211–217.

    PubMed  CAS  Google Scholar 

  17. Redgrave, T.G., Roberts, D.C.K., and West, C.E. (1975)Anal. Biochem. 65, 42–49.

    Article  PubMed  CAS  Google Scholar 

  18. Lowry, D.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951)J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  19. Nichols, A.V., Kraus, R.M., and Musliner, T.A. (1986)Methods Enzymol. 128 (part A), 417–431.

    PubMed  CAS  Google Scholar 

  20. Osborne, Jr., J.C. (1986)Methods Enzymol. (part A), 213–217.

    Article  Google Scholar 

  21. Godfrey, K. (1983)Compartmental Models and Their Application, Academic Press, New York.

    Google Scholar 

  22. Bevington, P.R. (1969)Data Reduction and Error Analysis for the Physical Sciences, McGraw Hill, New York.

    Google Scholar 

  23. Draper, N.R., and Smith, H. (1966) inApplied Regression Analysis, John Wiley & Sons, Inc., New York.

    Google Scholar 

  24. Matthews, C.M.E. (1857)Phys. Med. Biol. 2, 36–53.

    Article  Google Scholar 

  25. Maranhão, R.C., Roland, I.A., and Hirata, M.H. (1990)Lipids 25, 701–705.

    PubMed  Google Scholar 

  26. Stein, Y., Halperin, G., and Stein, O. (1981)Biochim. Biophys. Acta 663, 569–574.

    PubMed  CAS  Google Scholar 

  27. Windler, E.E., Kovanen, P.T., Chao, Y., Brown, M.S., Havel, R.J., and Goldstein, J.L. (1980)J. Biol. Chem. 255, 10464–10471.

    PubMed  CAS  Google Scholar 

  28. Cooper, A.D., Nutik, R., and Chen, J. (1987)J. Lipid Res. 28, 59–68.

    PubMed  CAS  Google Scholar 

  29. Chao, Y., Windler, E.E., Chen, C.C., and Havel, R.J. (1979)J. Biol. Chem. 254, 11360–11366.

    PubMed  CAS  Google Scholar 

  30. Kovanen, P.T., Brown, M.S., and Goldstein, J.L. (1979)J. Biol. Chem. 254, 11367–11373.

    PubMed  CAS  Google Scholar 

  31. Bhattacharya, S., Balasubramaniam, S., and Simons, L.A. (1984)Biochem. J. 220, 333–336.

    PubMed  CAS  Google Scholar 

  32. Bhattacharya, S., Balasubramaniam, S., and Simons, L.A. (1986)Biochem. J. 234, 493–496.

    PubMed  CAS  Google Scholar 

  33. Maranhão, R.C., Zerbinatti, C.V., Quintao, E.C., and Pileggi, F.C. (1986)Arteriosclerosis 6, 569.

    Google Scholar 

  34. Redgrave, T.G., Vassiliou, G.G., and Callow, M.J. (1987)Biochim. Biophys. Acta 921, 154–157.

    PubMed  CAS  Google Scholar 

  35. Eisenberg, S., Yitzchak, O., and Zimmerman, J. (1984)J. Lipid Res. 25, 121–128.

    PubMed  CAS  Google Scholar 

  36. Goldstein, J.L., and Brown, M.S. (1984)J. Lipid. Res. 25, 1450–1461.

    PubMed  CAS  Google Scholar 

  37. Roland, I., Ramires, J., Vinagre, C., and Maranhão, R.C. (1991)Arteriosclerosis 5, 1490–1491.

    Google Scholar 

  38. Maranhão, R.C., Garicochea, B., Silya, E.L., Llacer, P.D., Pileggi, F.J.C., and Chamone, D.A.F. (1992)Brazilian J. Med. Biol. Res. 25, 1003–1007.

    Google Scholar 

  39. Ho, Y.K., Smith, R.G., Brown, M.S., and Goldstein, J.L. (1978)Blood 52, 1099–1114.

    PubMed  CAS  Google Scholar 

  40. Vitols, S., Angelin, B., Ericsson, S., Gahrton, G., Juliusson, G., Masquelier, M., Peterson, C., Rudling, K., Soderberg-Reid, K., and Tidefelt, U. (1990)Proc. Natl. Acad. Sci. USA 87, 2598–2602.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Maranhão, R.C., Cesar, T.B., Pedroso-Mariani, S.R. et al. Metabolic behavior in rats of a nonprotein microemulsion resembling low-density lipoprotein. Lipids 28, 691–696 (1993). https://doi.org/10.1007/BF02535988

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535988

Keywords

Navigation