Skip to main content
Log in

Daily Intake of Cod or Salmon for 2 Weeks Decreases the 18:1n-9/18:0 Ratio and Serum Triacylglycerols in Healthy Subjects

  • Original Article
  • Published:
Lipids

An Erratum to this article was published on 17 May 2012

Abstract

Intake of fish and omega-3 (n-3) fatty acids is associated with a reduced concentration of plasma triacylglycerols (TAG) but the mechanisms are not fully clarified. Stearoyl-CoA desaturase-1 (SCD1) activity, governing TAG synthesis, is affected by n-3 fatty acids. Peripheral blood mononuclear cells (PBMC) display expression of genes involved in lipid metabolism. The aim of the present study was to estimate whether intake of lean and fatty fish would influence n-3 fatty acids composition in plasma phospholipids (PL), serum TAG, 18:1n-9/18:0 ratio in plasma PL, as well as PBMC gene expression of SCD1 and fatty acid synthase (FAS). Healthy males and females (n = 30), aged 20–40, consumed either 150 g of cod, salmon, or potato (control) daily for 15 days. During intervention docosahexaenoic acid (DHA, 22:6n-3) increased in the cod group (P < 0.05), while TAG concentration decreased (P < 0.05). In the salmon group both eicosapentaenoic acid (EPA, 20:5n-3) and DHA increased (P < 0.05) whereas TAG concentration and the 18:1n-9/18:0 ratio decreased (P < 0.05). Reduction of the 18:1n-9/18:0 ratio was associated with a corresponding lowering of TAG (P < 0.05) and an increase in EPA and DHA (P < 0.05). The mRNA levels of SCD1 and FAS in PBMC were not significantly altered after intake of cod or salmon when compared with the control group. In conclusion, both lean and fatty fish may lower TAG, possibly by reducing the 18:1n-9/18:0 ratio related to allosteric inhibition of SCD1 activity, rather than by influencing the synthesis of enzyme protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CE:

Cholesterol ester

CVD:

Cardiovascular disease

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

FAS:

Fatty acid synthase

GUSβ:

Glucuronidase-beta

HDL-C:

High density lipoprotein cholesterol

LA:

Linoleic acid

LDL-C:

Low density lipoprotein cholesterol

n-3:

Omega-3

PBMC:

Peripheral blood mononuclear cell

PL:

Phospholipid

PPARα:

Peroxisome-proliferator activated receptor alpha

PUFA:

Polyunsaturated fatty acid

SCD1:

Stearoyl-CoA desaturase-1

SREBP1:

Sterol regulatory element-binding protein 1

TBP:

TATA binding protein

TAG:

Triacylglycerol

VLDL:

Very low density lipoprotein

References

  1. Holub DJ, Holub BJ (2004) Omega-3 fatty acids from fish oils and cardiovascular disease. Mol Cell Biochem 263:217–225

    Article  PubMed  CAS  Google Scholar 

  2. Harris WS, Miller M, Tighe AP, Davidson MH, Schaefer EJ (2008) Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis 197:12–24

    Article  PubMed  CAS  Google Scholar 

  3. Balk EM, Lichtenstein AH, Chung M, Kupelnick B, Chew P, Lau J (2006) Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis 189:19–30

    Article  PubMed  CAS  Google Scholar 

  4. Harris WS, Bulchandani D (2006) Why do omega-3 fatty acids lower serum triglycerides? Curr Opin Lipidol 17:387–393

    Article  PubMed  CAS  Google Scholar 

  5. von Schacky C, Harris WS (2007) Cardiovascular benefits of omega-3 fatty acids. Cardiovasc Res 73:310–315

    Article  Google Scholar 

  6. Burr ML, Fehily AM, Gilbert JF, Rogers S, Holliday RM, Sweetnam PM, Elwood PC, Deadman NM (1989) Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet 2:757–761

    Article  PubMed  CAS  Google Scholar 

  7. (1999) Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet 354:447–455

  8. Marchioli R, Barzi F, Bomba E, Chieffo C, Di Gregorio D, Di Mascio R, Franzosi MG, Geraci E, Levantesi G, Maggioni AP, Mantini L, Marfisi RM, Mastrogiuseppe G, Mininni N, Nicolosi GL, Santini M, Schweiger C, Tavazzi L, Tognoni G, Tucci C, Valagussa F (2002) Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)-Prevenzione. Circulation 105:1897–1903

    Article  PubMed  CAS  Google Scholar 

  9. Yokoyama M, Origasa H (2003) Effects of eicosapentaenoic acid on cardiovascular events in Japanese patients with hypercholesterolemia: rationale, design, and baseline characteristics of the Japan EPA Lipid Intervention Study (JELIS). Am Heart J 146:613–620

    Article  PubMed  CAS  Google Scholar 

  10. Bang HO, Dyerberg J, Sinclair HM (1980) The composition of the Eskimo food in north western Greenland. Am J Clin Nutr 33:2657–2661

    PubMed  CAS  Google Scholar 

  11. Cullen P (2000) Evidence that triglycerides are an independent coronary heart disease risk factor. Am J Cardiol 86:943–949

    Article  PubMed  CAS  Google Scholar 

  12. Harris WS (1997) n-3 Fatty acids and serum lipoproteins: human studies. Am J Clin Nutr 65:1645S–1654S

    PubMed  CAS  Google Scholar 

  13. Harris WS (1989) Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review. J Lipid Res 30:785–807

    PubMed  CAS  Google Scholar 

  14. Skulas-Ray AC, West SG, Davidson MH, Kris-Etherton PM (2008) Omega-3 fatty acid concentrates in the treatment of moderate hypertriglyceridemia. Expert Opin Pharmacother 9:1237–1248

    Article  PubMed  CAS  Google Scholar 

  15. Davidson MH (2006) Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am J Cardiol 98:27i–33i

    Article  PubMed  CAS  Google Scholar 

  16. Skulas-Ray AC, Kris-Etherton PM, Harris WS, Vanden Heuvel JP, Wagner PR, West SG (2011) Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia. Am J Clin Nutr 93:243–252

    Article  PubMed  CAS  Google Scholar 

  17. Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757

    Article  PubMed  Google Scholar 

  18. Elvevoll EO, Eilertsen KE, Brox J, Dragnes BT, Falkenberg P, Olsen JO, Kirkhus B, Lamglait A, Osterud B (2008) Seafood diets: hypolipidemic and antiatherogenic effects of taurine and n-3 fatty acids. Atherosclerosis 200:396–402

    Article  PubMed  CAS  Google Scholar 

  19. Tidwell DK, McNaughton JP, Pellum LK, McLaurin BP, Chen SC (1993) Comparison of the effects of adding fish high or low in n-3 fatty acids to a diet conforming to the Dietary Guidelines for Americans. J Am Diet Assoc 93:1124–1128

    Article  PubMed  CAS  Google Scholar 

  20. Leaf DA, Hatcher L (2009) The effect of lean fish consumption on triglyceride levels. Phys Sportsmed 37:37–43

    Article  PubMed  Google Scholar 

  21. Miyazaki M, Kim YC, Gray-Keller MP, Attie AD, Ntambi JM (2000) The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1. J Biol Chem 275:30132–30138

    Article  PubMed  CAS  Google Scholar 

  22. Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AF, Stoehr JP, Hayden MR, Ntambi JM (2002) Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J Lipid Res 43:1899–1907

    Article  PubMed  CAS  Google Scholar 

  23. Murray RM, Granner DK, Mayes PA, and Rodwell VW 2000. Harper’s biochemistry. Appleton & Lange, New York. 927 pp

  24. Warensjo E, Riserus U, Gustafsson IB, Mohsen R, Cederholm T, Vessby B (2008) Effects of saturated and unsaturated fatty acids on estimated desaturase activities during a controlled dietary intervention. Nutr Metab Cardiovasc Dis 18:683–690

    Article  PubMed  Google Scholar 

  25. Velliquette RA, Gillies PJ, Kris-Etherton PM, Green JW, Zhao G, Vanden Heuvel JP (2009) Regulation of human stearoyl-CoA desaturase by omega-3 and omega-6 fatty acids: implications for the dietary management of elevated serum triglycerides. J Clin Lipidol 3:281–288

    Article  PubMed  Google Scholar 

  26. Shiwaku K, Hashimoto M, Kitajima K, Nogi A, Anuurad E, Enkhmaa B, Kim JM, Kim IS, Lee SK, Oyunsuren T, Shido O, Yamane Y (2004) Triglyceride levels are ethnic-specifically associated with an index of stearoyl-CoA desaturase activity and n-3 PUFA levels in Asians. J Lipid Res 45:914–922

    Article  PubMed  CAS  Google Scholar 

  27. Christiansen EN, Lund JS, Rortveit T, Rustan AC (1991) Effect of dietary n-3 and n-6 fatty acids on fatty acid desaturation in rat liver. Biochim Biophys Acta 1082:57–62

    PubMed  CAS  Google Scholar 

  28. Guillou H, Martin PG, Pineau T (2008) Transcriptional regulation of hepatic fatty acid metabolism. Subcell Biochem 49:3–47

    Article  PubMed  Google Scholar 

  29. Kim HJ, Takahashi M, Ezaki O (1999) Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (SREBP-1) by down-regulation of SREBP-1c mRNA in mouse liver. A possible mechanism for down-regulation of lipogenic enzyme mRNAs. J Biol Chem 274:25892–25898

    Article  PubMed  CAS  Google Scholar 

  30. Chinetti G, Griglio S, Antonucci M, Torra IP, Delerive P, Majd Z, Fruchart JC, Chapman J, Najib J, Staels B (1998) Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 273:25573–25580

    Article  PubMed  CAS  Google Scholar 

  31. Marx N, Kehrle B, Kohlhammer K, Grub M, Koenig W, Hombach V, Libby P, Plutzky J (2002) PPAR activators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis. Circ Res 90:703–710

    Article  PubMed  CAS  Google Scholar 

  32. Marx N, Mackman N, Schonbeck U, Yilmaz N, Hombach V, Libby P, Plutzky J (2001) PPARalpha activators inhibit tissue factor expression and activity in human monocytes. Circulation 103:213–219

    PubMed  CAS  Google Scholar 

  33. Bouwens M, Afman LA, Muller M (2007) Fasting induces changes in peripheral blood mononuclear cell gene expression profiles related to increases in fatty acid beta-oxidation: functional role of peroxisome proliferator activated receptor alpha in human peripheral blood mononuclear cells. Am J Clin Nutr 86:1515–1523

    PubMed  CAS  Google Scholar 

  34. Bouwens M, Afman LA, Muller M (2008) Activation of peroxisome proliferator-activated receptor alpha in human peripheral blood mononuclear cells reveals an individual gene expression profile response. BMC Genomics 9:262

    Article  PubMed  Google Scholar 

  35. Bouwens M, Grootte Bromhaar M, Jansen J, Muller M, Afman LA (2010) Postprandial dietary lipid-specific effects on human peripheral blood mononuclear cell gene expression profiles. Am J Clin Nutr 91:208–217

    Article  PubMed  CAS  Google Scholar 

  36. Lie O, Lambertsen G (1991) Fatty acid composition of glycerophospholipids in seven tissues of cod (Gadus morhua), determined by combined high-performance liquid chromatography and gas chromatography. J Chromatogr 565:119–129

    Article  PubMed  CAS  Google Scholar 

  37. Torstensen BE, Lie O, Froyland L (2000) Lipid metabolism and tissue composition in Atlantic salmon (Salmo salar L.)—effects of capelin oil, palm oil, and oleic acid-enriched sunflower oil as dietary lipid sources. Lipids 35:653–664

    Article  PubMed  CAS  Google Scholar 

  38. Almendingen K, Hostmark AT, Fausa O, Mosdol A, Aabakken L, Vatn MH (2007) Familial adenomatous polyposis patients have high levels of arachidonic acid and docosahexaenoic acid and low levels of linoleic acid and alpha-linolenic acid in serum phospholipids. Int J Cancer 120:632–637

    Article  PubMed  CAS  Google Scholar 

  39. Zhao G, Etherton TD, Martin KR, Gillies PJ, West SG, Kris-Etherton PM (2007) Dietary alpha-linolenic acid inhibits proinflammatory cytokine production by peripheral blood mononuclear cells in hypercholesterolemic subjects. Am J Clin Nutr 85:385–391

    PubMed  CAS  Google Scholar 

  40. de Mello VD, Erkkila AT, Schwab US, Pulkkinen L, Kolehmainen M, Atalay M, Mussalo H, Lankinen M, Oresic M, Lehto S, Uusitupa M (2009) The effect of fatty or lean fish intake on inflammatory gene expression in peripheral blood mononuclear cells of patients with coronary heart disease. Eur J Nutr 48:447–455

    Article  PubMed  CAS  Google Scholar 

  41. Jeffcoat R, James AT (1977) Interrelationship between the dietary regulation of fatty acid synthesis and the fatty acyl-CoA desaturases. Lipids 12:469–474

    Article  PubMed  CAS  Google Scholar 

  42. Mauvoisin D, Mounier C (2011) Hormonal and nutritional regulation of SCD1 gene expression. Biochimie 93:78–86

    Article  PubMed  CAS  Google Scholar 

  43. Ntambi JM (1999) Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 40:1549–1558

    PubMed  CAS  Google Scholar 

  44. Kajikawa S, Harada T, Kawashima A, Imada K, Mizuguchi K (2009) Highly purified eicosapentaenoic acid prevents the progression of hepatic steatosis by repressing monounsaturated fatty acid synthesis in high-fat/high-sucrose diet-fed mice. Prostaglandins Leukot Essent Fat Acids 80:229–238

    Article  CAS  Google Scholar 

  45. Bellenger J, Bellenger S, Clement L, Mandard S, Diot C, Poisson JP, Narce M (2004) A new hypotensive polyunsaturated fatty acid dietary combination regulates oleic acid accumulation by suppression of stearoyl CoA desaturase 1 gene expression in the SHR model of genetic hypertension. FASEB J 18:773–775

    PubMed  CAS  Google Scholar 

  46. Mutungi G, Torres-Gonzalez M, McGrane MM, Volek JS, Fernandez ML (2007) Carbohydrate restriction and dietary cholesterol modulate the expression of HMG-CoA reductase and the LDL receptor in mononuclear cells from adult men. Lipids Health Dis 6:34

    Article  PubMed  Google Scholar 

  47. Patalay M, Lofgren IE, Freake HC, Koo SI, Fernandez ML (2005) The lowering of plasma lipids following a weight reduction program is related to increased expression of the LDL receptor and lipoprotein lipase. J Nutr 135:735–739

    PubMed  CAS  Google Scholar 

  48. Myhrstad MC, Narverud I, Telle-Hansen VH, Karhu T, Bodtker Lund D, Herzig KH, Makinen M, Halvorsen B, Retterstol K, Kirkhus B, Granlund L, Holven KB, and Ulven SM (2011) Effect of the fat composition of a single high-fat meal on inflammatory markers in healthy young women. Br J Nutr 106:1826–1835

    Google Scholar 

  49. Hagen RM, Rodriguez-Cuenca S, Vidal-Puig A (2010) An allostatic control of membrane lipid composition by SREBP1. FEBS Lett 584:2689–2698

    Article  PubMed  CAS  Google Scholar 

  50. Jump DB (2008) N-3 polyunsaturated fatty acid regulation of hepatic gene transcription. Curr Opin Lipidol 19:242–247

    Article  PubMed  CAS  Google Scholar 

  51. Ou J, Tu H, Shan B, Luk A, DeBose-Boyd RA, Bashmakov Y, Goldstein JL, Brown MS (2001) Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. Proc Natl Acad Sci USA 98:6027–6032

    Article  PubMed  CAS  Google Scholar 

  52. Knight BL, Hebbachi A, Hauton D, Brown AM, Wiggins D, Patel DD, Gibbons GF (2005) A role for PPARalpha in the control of SREBP activity and lipid synthesis in the liver. Biochem J 389:413–421

    Article  PubMed  CAS  Google Scholar 

  53. Flowers MT, Ntambi JM (2008) Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Curr Opin Lipidol 19:248–256

    Article  PubMed  CAS  Google Scholar 

  54. Tou JC, Jaczynski J, Chen YC (2007) Krill for human consumption: nutritional value and potential health benefits. Nutr Rev 65:63–77

    Article  PubMed  Google Scholar 

  55. Ulven SM, Kirkhus B, Lamglait A, Basu S, Elind E, Haider T, Berge K, Vik H, Pedersen JI (2011) Metabolic effects of krill oil are essentially similar to those of fish oil but at lower dose of EPA and DHA, in healthy volunteers. Lipids 46:37–46

    Article  PubMed  CAS  Google Scholar 

  56. Grimsgaard S, Bonaa KH, Hansen JB, Nordoy A (1997) Highly purified eicosapentaenoic acid and docosahexaenoic acid in humans have similar triacylglycerol-lowering effects but divergent effects on serum fatty acids. Am J Clin Nutr 66:649–659

    PubMed  CAS  Google Scholar 

  57. Schwellenbach LJ, Olson KL, McConnell KJ, Stolcpart RS, Nash JD, Merenich JA (2006) The triglyceride-lowering effects of a modest dose of docosahexaenoic acid alone versus in combination with low dose eicosapentaenoic acid in patients with coronary artery disease and elevated triglycerides. J Am Coll Nutr 25:480–485

    PubMed  CAS  Google Scholar 

  58. Park Y, Harris WS (2003) Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance. J Lipid Res 44:455–463

    Article  PubMed  Google Scholar 

  59. Yanagita T, Han SY, Hu Y, Nagao K, Kitajima H, Murakami S (2008) Taurine reduces the secretion of apolipoprotein B100 and lipids in HepG2 cells. Lipids Health Dis 7:38

    Article  PubMed  Google Scholar 

  60. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325

    Article  PubMed  CAS  Google Scholar 

  61. Lara JJ, Economou M, Wallace AM, Rumley A, Lowe G, Slater C, Caslake M, Sattar N, Lean ME (2007) Benefits of salmon eating on traditional and novel vascular risk factors in young, non-obese healthy subjects. Atherosclerosis 193:213–221

    Article  PubMed  CAS  Google Scholar 

  62. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR (1977) High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med 62:707–714

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to all the participants who made this work possible. We are also grateful to researcher Mari C.W. Myhrstad for critically reading the manuscript. The study was supported by Akershus University College, Norwegian Research Council (grant number 176619/V00 and grant number 142468/140), The Norwegian Cancer Society (grant number 88309/010) and Eastern Norway Regional Health Authority RHF (grant number 2006094 and grant number 2007021). Akershus University College is Member of SYSDIET, a Nordic Centre of excellence financed by Nordforsk (project number 070014).

Conflict of interest

There is no conflict of interest among the authors and financial supporters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stine M. Ulven.

About this article

Cite this article

Telle-Hansen, V.H., Larsen, L.N., Høstmark, A.T. et al. Daily Intake of Cod or Salmon for 2 Weeks Decreases the 18:1n-9/18:0 Ratio and Serum Triacylglycerols in Healthy Subjects. Lipids 47, 151–160 (2012). https://doi.org/10.1007/s11745-011-3637-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3637-y

Keywords

Navigation