Skip to main content
Log in

Growth Temperature and Salinity Impact Fatty Acid Composition and Degree of Unsaturation in Peanut-Nodulating Rhizobia

  • Original Article
  • Published:
Lipids

Abstract

Growth and survival of bacteria depend on homeostasis of membrane lipids, and the capacity to adjust lipid composition to adapt to various environmental stresses. Membrane fluidity is regulated in part by the ratio of unsaturated to saturated fatty acids present in membrane lipids. Here, we studied the effects of high growth temperature and salinity (NaCl) stress, separately or in combination, on fatty acids composition and de novo synthesis in two peanut-nodulating Bradyrhizobium strains (fast-growing TAL1000 and slow-growing SEMIA6144). Both strains contained the fatty acids palmitic, stearic, and cis-vaccenic + oleic. TAL1000 also contained eicosatrienoic acid and cyclopropane fatty acid. The most striking change, in both strains, was a decreased percentage of cis-vaccenic + oleic (≥80% for TAL1000), and an associated increase in saturated fatty acids, under high growth temperature or combined conditions. Cyclopropane fatty acid was significantly increased in TAL1000 under the above conditions. De novo synthesis of fatty acids was shifted to the synthesis of a higher proportion of saturated fatty acids under all tested conditions, but to a lesser degree for SEMIA6144 compared to TAL1000. The major adaptive response of these rhizobial strains to increased temperature and salinity was an altered degree of fatty acid unsaturation, to maintain the normal physical state of membrane lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CFU:

Colony forming unit

FAME:

Fatty acid methyl esters

FA:

Fatty acids

GC:

Gas chromatography

HPLC:

High performance liquid chromatography

PL:

Phospholipids

Ptd2Gro:

Cardiolipin

DMPtdEtn:

Dimethyl phosphatidylethanolamine

LPtdEtn:

Lysophosphatidylethanolamine

PtdCho:

Phosphatidylcholine

PtdEtn:

Phosphatidylethanolamine

PtdGro:

Phosphatidylglycerol

SEM:

Standard error of the mean

TLC:

Thin layer chromatography

UFA:

Unsaturated fatty acids

U/S:

Ratio between sum of unsaturated to sum of saturated fatty acids

Z/A:

Ratio of zwitterionic to anionic phospholipids

References

  1. Gomes-Germano M, Menna P, Mostasso F, Hungria M (2006) RFLP analysis of the rRNA operon of a Brazilian collection of bradyrhizobial strains from 33 legume species. Int J Syst Evol Microbiol 56:217–229

    Article  Google Scholar 

  2. Somasegaran P, Hoben H (1994) Handbook for Rhizobia: methods in legume-Rhizobium technology. Spring-Verlag, New York

    Google Scholar 

  3. Boogerd FC, van Rossum D (1997) Nodulation of groundnut by Bradyrhizobium: a simple infection process by crack entry. FEMS Microbiol Rev 21:5–27

    Article  CAS  Google Scholar 

  4. Drouin P, Prevost D, Antoun H (2000) Physiological adaptation to low temperatures of strains of Rhizobium leguminosarum bv. viciae associated with Lathyrus spp. FEMS Microbiol Ecol 32:111–120

    PubMed  CAS  Google Scholar 

  5. Zahran H (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    PubMed  CAS  Google Scholar 

  6. Dardanelli M, González P, Medeot D, Paulucci N, Bueno M, Garcia M (2009) Effects of peanut rhizobia on the growth and symbiotic performance of Arachis hypogaea under abiotic stress. Symbiosis 47:175–180

    Article  CAS  Google Scholar 

  7. Aricha B, Fishov I, Cohen Z, Sikron N, Pesakhov S, Khozin-Goldberg I, Ron Dagan R, Porat N (2004) Differences in membrane fluidity and fatty acid composition between phenotypic variants of Streptococcus pneumoniae. J Bacteriol 186:4638–4644

    Article  PubMed  CAS  Google Scholar 

  8. Bakholdina S, Sanina N, Krasikova I, Popova O, Solov’eva T (2004) The impact of abiotic factors (temperature and glucose) on physicochemical properties of lipids from Yersinia pseudotuberculosis. Biochemistry 86:875–881

    Article  CAS  Google Scholar 

  9. Dowhan W (1997) Molecular basis for membrane phospholipids diversity: why are there so many lipids? Annu Rev Biochem 66:199–232

    Article  PubMed  CAS  Google Scholar 

  10. Soltani M, Metzger P, Largeau C (2005) Fatty acid and hydroxy acid adaptation in three gram-negative hydrocarbon-degrading bacteria in relation to carbon source. Lipids 40:1263–1272

    Article  PubMed  CAS  Google Scholar 

  11. Beney L, Gervais P (2001) Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses. Appl Microbiol Biotechnol 57:34–42

    Article  PubMed  CAS  Google Scholar 

  12. Denich T, Beaudette L, Lee H, Trevors J (2003) Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods 52:149–182

    Article  PubMed  CAS  Google Scholar 

  13. Medeot D, Bueno M, Dardanelli M, García de Lema M (2007) Adaptational changes in lipids of Bradyrhizobium SEMIA6144 nodulating peanut as a response to growth temperature and salinity. Curr Microbiol 54:31–35

    Article  PubMed  CAS  Google Scholar 

  14. Russell N (1992) In: Herber RA, Sharp RJ (eds) Psychrophilic Microorganisms. Molecular Biology and Biotechnology of Extremophiles. Blackie, Glasgow

  15. Ramos J, Duques E, Rodriguez-Herva J, Godoy P, Haidour A, Reyes F, Fernandez-Barrero A (1997) Mechanisms for solvent tolerance in bacteria. J Biol Chem 272:3887–3890

    Article  PubMed  CAS  Google Scholar 

  16. Donato M, Jurado A, Antunes-Madeira M, Madeira V (2000) Membrane lipid composition of Bacillus stearo-thermophilus as affected by lipophilic environmental pollutants: an approach to membrane toxicity assessment. Arch Environ Contam Toxicol 39:145–153

    Article  PubMed  CAS  Google Scholar 

  17. Russell N, Fukunaga N (1990) A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol 75:171–182

    Article  CAS  Google Scholar 

  18. Suutari M, Liukkonen K, Laakso S (1990) Temperature adaptation in yeasts: the role of fatty acids. J Gen Microbiol 136:1469–1474

    PubMed  CAS  Google Scholar 

  19. Suutari M, Laakso S (1994) Microbial fatty acid and thermal adaptation. Crit Rev Microbiol 20:285–328

    Article  PubMed  CAS  Google Scholar 

  20. Chihib N, Tierny Y, Mary P, Hornez J (2005) Adaptational changes in cellular fatty acid branching and unsaturation of Aeromonas species as a response to growth temperature and salinity. Int J Food Microbiol 102:113–119

    Article  PubMed  CAS  Google Scholar 

  21. Keweloh H, Heipieper H (1996) Trans unsaturated fatty acids in bacteria. Lipids 31:129–136

    Article  PubMed  CAS  Google Scholar 

  22. Aguilar P, Cronan J, de Mendoza D (1998) A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol 180:2194–2200

    PubMed  CAS  Google Scholar 

  23. Sohlenkamp C, López-Lara IM, Geiger O (2003) Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res 42:115–162

    Article  PubMed  CAS  Google Scholar 

  24. Tighe S, de Lajudie P, Dipietro K, Lindström K, Nick G, Jarvis B (2000) Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801

    PubMed  CAS  Google Scholar 

  25. Boumahdi M, Mary P, Hornez J (1999) Influence of growth phases and desiccation on the degrees of unsaturation of fatty acids and the survival rates of rhizobia. J Appl Microbiol 87:611–619

    Article  PubMed  CAS  Google Scholar 

  26. Boumahdi M, Mary P, Hornez J (2001) Changes in fatty acid composition and degree of unsaturation of (brady)rhizobia as a response to phases of growth, reduced water activities and mild desiccation. Antonie van Leeuwenhoek 79:73–79

    Article  PubMed  CAS  Google Scholar 

  27. Théberge M, Prévost D, Chalifour P (1996) The effect of different temperatures on the fatty acids composition of Rhizobium leguminosarum bv. viciae in the faba bean symbiosis. New Phytol 134:657–664

    Article  Google Scholar 

  28. Spaink H, Aarts A, Stacey G, Bloemberg G, Lugtenberg B, Kennedy E (1992) Detection and separation of Rhizobium and Bradyrhizobium nod metabolites using thin-layer chromatography. Mol Plant Microbe Interact 5:72–80

    Article  PubMed  CAS  Google Scholar 

  29. da Silva R (1996) Técnica de Microgota para contagem de células bacterianas viáveis em uma suspensão, 1-7. Universidade Federal de Viςosa, Viςosa, Minas Gerais, Brazil

  30. Bligh E, Dyer W (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–918

    PubMed  CAS  Google Scholar 

  31. Kates M (1972) Radioisotopic techniques in lipidology. In: Work TS, Work E (eds) Techniques in lipidology. North Holland Amsterdam, Elsevier, New York

    Google Scholar 

  32. Morrison W, Smith L (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride. J Lipid Res 5:600–608

    PubMed  CAS  Google Scholar 

  33. Henderson R, Tocher D (1992) Thin layer chromatography. In: Hamilton R, Hamilton S (eds) Lipid analysis a practical approach. Oxford University Press, Oxford-New York-Tokyo

    Google Scholar 

  34. Lindstrom K, Lehtomaki S (1988) Metabolic properties, maximum growth temperature and phage sensitivity of Rhizobium sp. (Galea) compared with other fast growing rhizobia. FEMS Microbiol Lett 50:277–287

    Article  Google Scholar 

  35. Härtig C, Loffhagen N, Harms H (2005) Formation of trans fatty acids is not involved in growth-linked membrane adaptation of Pseudomonas putida. Appl Environ Microbiol 71:1915–1922

    Article  PubMed  Google Scholar 

  36. Ramos J, Duque E, Gallegos M, Godoy P, Ramos-González M, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerant in gram negative bacteria. Ann Rev Microbiol 56:743–768

    Article  CAS  Google Scholar 

  37. Guerzoni E, Lanciotti R, Cocconcelli S (2001) Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147:2255–2264

    PubMed  CAS  Google Scholar 

  38. Wada M, Fukunaga N, Sasaki S (1989) Mechanism of biosynthesis of unsaturated fatty acids in Pseudomonas sp. strain E-3, a psychotropic bacterium. J Bacteriol 171:4267–4271

    PubMed  CAS  Google Scholar 

  39. Ghaneker A, Nair P (1973) Evidence for the existence of an aerobic pathway for synthesis of monounsaturated fatty acids by Alcaligenes faecalis. J Bacteriol 114:618–624

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance was provided by SECyT-UNRC/Argentina. N.S.P. is a fellow of CONICET-Argentina. D.B.M. was a fellow of CONICET-Argentina. M.S.D. is a member of the Research Career of CONICET-Argentina. The authors thank Dr. Laura Villasuso for her valuable assistance in the preparation of the figures and Dr. Ricardo Lema for his help with the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirta García de Lema.

About this article

Cite this article

Paulucci, N.S., Medeot, D.B., Dardanelli, M.S. et al. Growth Temperature and Salinity Impact Fatty Acid Composition and Degree of Unsaturation in Peanut-Nodulating Rhizobia. Lipids 46, 435–441 (2011). https://doi.org/10.1007/s11745-011-3545-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3545-1

Keywords

Navigation