Skip to main content
Log in

Short Term Dietary Fish Oil Supplementation Improves Motor Deficiencies Related to Reserpine-Induced Parkinsonism in Rats

  • Original Article
  • Published:
Lipids

Abstract

Fish oil (FO) supplementation could cause an increase in the concentration of plasmatic free fatty acids and, consequently, could compete with pro-inflammatory arachidonic acid (ARA) derived from brain biomembranes metabolism in the cerebrospinal fluid. Essential fatty acids (EFA) (n-3) have been reported by their antioxidant and neuroprotective properties, and therefore the influence of the FO supplementation on the reserpine-induced motor disorders was studied. Wistar rats were orally treated with FO solution for 5 days, and co-treated with reserpine (R; 1 mg/kg/mL) or its vehicle for 3 days (every other day). Reserpine-induced orofacial dyskinesia and catalepsy (P < 0.05) were prevented by FO (P < 0.05). Biochemical evaluations showed that reserpine treatment increased the lipid peroxidation in the cortex and striatum (P < 0.05), while the FO supplementation prevented this oxidative effect in both brain regions (P < 0.05). Our results showed the protective role of FO in the brain lipid membranes, reinforcing the beneficial effect of n-3 fatty acids in the prevention of degenerative and motor disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ALA:

α-Linolenic acid

ARA:

Arachidonic acid

DA:

Dopamine

DHA:

Docosahexaenoic acid

DPA:

Docosapentaenoic acid

EFA:

Essential fatty acid(s)

EPA:

Eicosapentaenoic acid

FO:

Fish oil

FT:

Facial twitching

LNA:

Linoleic acid

MAO:

Monoamine oxidase

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PUFA:

Polyunsaturated fatty acids

SO:

Soybean oil

TBARS:

Thiobarbituric acid reactive substances

VCM:

Vacuous chewing movements

VMAT:

Vesicular monoamine transporter

References

  1. Sarsilmaz M, Songur A, Ozyurt H, Kus I, Ozen OA, Ozyurt B, Sogut S, Akyol O (2003) Potential role of dietary ω-3 essential fatty acids on some oxidant/antioxidant parameters in rats’ corpus striatum. Prostaglandins Leukot Essent Fatty Acids 69:253–259

    Article  CAS  PubMed  Google Scholar 

  2. Songur A, Sarsilmaz M, Sogut S, Ozyurt B, Ozyurt H, Zararsiz I, Turkoglu AO (2004) Hypothalamic superoxide dismutase, xanthine oxidase, nitric oxide, and malondialdehyde in rats fed with ω-3 fatty acids. Prog Neuropsychopharmacol Biol Psychiatry 28:693–698

    Article  CAS  PubMed  Google Scholar 

  3. Zararsiz I, Kus I, Akpolat N, Songur A, Ogeturk M, Sarsilmaz M (2006) Protective effects of omega-3 essential fatty acids against formaldehyde-induced neuronal damage in prefrontal cortex of rats. Cell Biochem Funct 24:237–244

    Article  CAS  PubMed  Google Scholar 

  4. Haag M (2003) Essential fatty acids and the brain. Can J Psychiatr 48:195–203

    Google Scholar 

  5. Jump DB (2002) Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr Opin Lipidol 13:155–164

    Article  CAS  PubMed  Google Scholar 

  6. Yehuda S, Rabinovitz S, Mostofski DI (2005) Essential fatty acids and stress. In: Yehuda S, Mostofsky DI (eds) Nutrition, stress and medical disorders. Humana Press, Totowa, pp 99–100

    Google Scholar 

  7. Chalon S, Delion-Vancassel S, Belzung C, Guilloteau D, Lequisquet AM, Besnard JC, Durand G (1998) Dietary fish oil induces affects in monoaminergic neurotransmission and behavior in rats. J Nutr 128:2512–2519

    CAS  PubMed  Google Scholar 

  8. Wainwright PE (2002) Dietary essential fatty acids and brain function: a development perspective on mechanisms. Proc Nutr Soc 61:61–69

    Article  CAS  PubMed  Google Scholar 

  9. Wainwright PE, Xing HC, Mutsaers L, McCutcheon D, Kyle D (1997) Arachidonic acid offsets the effects on mouse brain and behavior of a diet with a low (n-6)/(n-3) ratio and very high levels of docosahexaenoic acid. J Nutr 127:184–193

    CAS  PubMed  Google Scholar 

  10. Éthier I, Kagechika H, Shudo K, Rouillard C, Lévesque D (2004) Docosahexaenoic Acid Reduces Haloperidol-Induced Dyskinesias in Mice: Involvement of Nur77 and Retinoid Receptors. Biol Psychiatry 56:522–526

    Article  PubMed  Google Scholar 

  11. Yehuda S (1989) Behavioral effects of dietary fats. In: Chandra RK (ed) Health effects of fish and fish oils. ARTS St John’s, Canada, pp 327–335

    Google Scholar 

  12. Lee PH, Lee G, Paik MJ (2008) Polyunsaturated fatty acids levels in the cerebrospinal fluid of patients with Parkinson’s disease and multiple system atrophy. Mov Disord 23:309–310

    Article  PubMed  Google Scholar 

  13. Fuentes P, Paris I, Nassif M, Caviedes P, Segura-Aguilar J (2007) Inhibition of VMAT-2 and DT-diaphorase induce cell death in a substantia nigra-derived cell Line - an experimental cell model for dopamine toxicity studies. Chem Res Toxicol 20:776–783

    Article  CAS  PubMed  Google Scholar 

  14. Bilska A, Dubiel M, Sokolowska-Jez’ewicz M, Lorenc-Koci E, Wlodek L (2007) Alpha-lipoic acid differently affects the reserpine-induced oxidative stress in the striatum and prefrontal cortex of rat brain. Neuroscience 146:1758–1771

    Article  CAS  PubMed  Google Scholar 

  15. Teixeira AM, Reckziegel P, Müller L, Pereira RP, Roos DH, Rocha JBT, Bürger ME (2009) Intense exercise potentiates oxidative stress in striatum of reserpine-treated animals. Pharmacol Biochem Behav 92:231–235

    Article  CAS  PubMed  Google Scholar 

  16. Hallet PJ, Brotchie JM (2007) Striatal delta opioid receptor binding in experimental models of Parkinson’s disease and dyskinesia. Mov Disord 22:28–40

    Article  Google Scholar 

  17. Abilio VC, Silva RH, Carvalho RC, Grassl C, Calzavara MB, Registro S, D′Almeida V, Ribeiro R de R, Frussa-Filho R (2004) Important role of striatal catalase in aging- and reserpine-induced oral dyskinesia. Neuropharmacology 47:263–272

    Article  CAS  PubMed  Google Scholar 

  18. Bürger ME, Alves A, Callegari L, Athaide FR, Nogueira CCW, Zeni G, Rocha JBT (2003) Ebselen attenuates reserpine-induced orofacial dyskinesia and oxidative stress in rat striatum. Progr Neuropharmacol Biol Psychiatry 27:135–140

    Article  Google Scholar 

  19. Bürger ME, Fachinetto R, Alves A, Callegari L, Rocha JBT (2005) Acute reserpine and subchronic haloperidol treatments change synaptosomal brain glutamate uptake and elicit orofacial dyskinesia in rats. Brain Res 1031:202–210

    Article  PubMed  Google Scholar 

  20. Naidu PS, Singh A, Kulkarni SK (2004) Reversal of reserpine-induced orofacial dyskinesia and cognitive dysfunction by quercetin. Pharmacology 70:59–67

    Article  CAS  PubMed  Google Scholar 

  21. Hughes NR, McKnight AT, Woodruff GN, Hill MP, Crossman AR, Brotchie JM (1998) Kappa-opioid receptor agonists increase locomotor activity in the monoamine-depleted rat model of parkinsonism. Mov Disord 13:228–233

    Article  CAS  PubMed  Google Scholar 

  22. Hubbard A, Trugman JM (1993) Reversal of reserpine-induced catalepsy by selective D1 and D2 dopamine agonists. Mov Disord 8:473–478

    Article  CAS  PubMed  Google Scholar 

  23. Teixeira AM, Trevizol F, Colpo G, Garcia SC, Charo M, Pereira RP, Fachinetto R, JBT Rocha, Bürger ME (2008) Influence of chronic exercise on reserpine-induced oxidative stress in rats: Behavioral and antioxidant evaluations. Pharmacol Biochem Behav 88:465–472

    Article  CAS  PubMed  Google Scholar 

  24. Lohr JB, Kuczenski R, Niculescu AB (2003) Oxidative mechanisms and tardive dyskinesia. CNS Drugs 17:47–62

    Article  CAS  PubMed  Google Scholar 

  25. Lohr JB, Kuczenski R, Bracha HS (1990) Increased indices of free radical activity in the cerebrospinal fluid of patients with tardive dyskinesia. Biol Psychiatry 28:535–539

    Article  CAS  PubMed  Google Scholar 

  26. Andreassen OA, Jorgensen HA (2000) Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats. Implications for tardive dyskinesia? Prog Neurobiol 61:525–541

    Article  CAS  PubMed  Google Scholar 

  27. Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood barrier. Neuropharmacology 40:959–975

    Article  CAS  PubMed  Google Scholar 

  28. Halliwel B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  29. Evans DR, Parikh VV, Khan MM, Coussons C, Buckley PF, Mahadik SP (2003) Red blood cell membrane essential fatty acid metabolism in early psychotic patients following antipsychotic drug treatment. Prostaglandins Leukot Essent Fatty Acids 69:393–399

    Article  CAS  PubMed  Google Scholar 

  30. Bazan N (2009) Cellular and molecular events mediated by docosahexaenoic acid-derived neuroprotectin D1 signaling in photoreceptor cell survival and brain protection. Prostaglandins Leukot Essent Fatty Acids 81:205–211

    Article  CAS  PubMed  Google Scholar 

  31. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  32. Ozyurt B, Sarsilmaz M, Akpolat N, Ozyurt H, Akyol O, Herken H, Kus I (2007) The protective effects of omega-3 fatty acids against MK-801-induced neurotoxicity in prefrontal cortex of rat. Neurochem Int 50:196–202

    Article  CAS  PubMed  Google Scholar 

  33. Bazan NG (2006) The onset of brain injury and neurodegeneration triggers the synthesis of docosanoid neuroprotective signaling. Cell Mol Neurobiol 26:899–911

    Article  Google Scholar 

  34. Bazan NG (2007) Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Clin Nutr Metab Care 10:136–141

    Article  CAS  Google Scholar 

  35. Fenton WS, Hibbeln J, Knable M (2000) Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biol Psychiatry 47:8–21

    Article  CAS  PubMed  Google Scholar 

  36. Sussman AN, Tran-Nguyen LTL, Neisewander JL (1997) Acute reserpine administration elicits long-term spontaneous oral dyskinesia. Eur J Pharmacol 337:157–160

    Article  CAS  PubMed  Google Scholar 

  37. Neiswander JL, Castañeda E, Davis DA (1994) Dose-dependent differences in the development of reserpine-induced oral-dyskinesia in rats: support for a model of tardive dyskinesia. Psychopharmacology 116:79–84

    Article  Google Scholar 

  38. Raghavendra V, Naidu PS, Kulkarni SK (2001) Reversal of reserpine-induced vacuous chewing movements in rats by melatonin: involvement of peripheral benzodiazepine receptors. Brain Res 904:149–152

    Article  CAS  PubMed  Google Scholar 

  39. Colpo G, Trevisol F, Teixeira AM, Fachinetto R, Pereira RP, Athayde ML, Rocha JBT, Bürger ME (2007) Ilex paraguariensis has antioxidant and attenuates haloperidol-induced orofacial dyskinesia and memory dysfunction in rats. Neurotox Res 12:1–10

    Article  Google Scholar 

  40. Zimmer L, Durand G, Guilloteau D, Chalon S (1999) n-3 polyunsaturated fatty acid deficiency and dopamine metabolism in the rat frontal cortex. Lipids 34:S251

    Article  CAS  PubMed  Google Scholar 

  41. Zimmer L, Delpal S, Guilloteau D, Aïoun J, Durand G, Chalon S (2000) Chronic n-3 polyunsaturated fatty acid deficiency alters dopamine vesicle density in the rat frontal cortex. Neurosci Lett 284:25–28

    Article  CAS  PubMed  Google Scholar 

  42. Zimmer L, Vancassel S, Cantagrel S, Breton P, Delamanche S, Guiloteau D, Durand G, Chalon S (2002) The dopamine mesocorticolimbic pathway is affected by deficiency in n-3 polyunsaturated fatty acids. Am J Clin Nutr 75:662–667

    CAS  PubMed  Google Scholar 

  43. Delion S, Chalon S, Herault J, Guilloteau D, Besnard JC, Durand G (1994) Chronic dietary alpha-linolenic acid deficiency alters dopaminergic and serotoninergic neurotransmission in rats. J Nutr 124:2466–2476

    CAS  PubMed  Google Scholar 

  44. Delion S, Chalon S, Guilloteau D, Besnard JC, Durand G (1996) Alpha-linolenic acid dietary deficiency alters age-related changes of dopaminergic and serotoninergic transmission in the rat frontal cortex. J Neurochem 66:1582–1591

    Article  CAS  PubMed  Google Scholar 

  45. Calder PC (2001) Omega 3 polyunsaturated fatty acids, inflammation and immunity. World Rev Nutr Diet 88:109–116

    Article  CAS  PubMed  Google Scholar 

  46. Farooqui AA, Horrocks LA (2006) Phospholipase A2-generated lipid mediators in the brain: the good, the bad and the ugly. Neuroscientist 12:245–260

    Article  CAS  PubMed  Google Scholar 

  47. De Caterina R, Massaro M (2005) Omega-3 fatty acids and the regulation of expression of endothelial pro-atherogenic and pro-inflammatory genes. J Membr Biol 206:103–116

    Article  PubMed  Google Scholar 

  48. Farooqui AA, Horrocks LA, Farooqui T (2000) Glycerophospholipids in brain: their metabolism, incorporation into membranes and involvement in neurological disorders. Chem Phys Lipids 106:1–29

    Article  CAS  PubMed  Google Scholar 

  49. Burgess JR, Stevens L, Zhang W, Peck L (2000) Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. Am J Clin Nutr 71:327S–330S

    CAS  PubMed  Google Scholar 

  50. Sorgi PJ, Hallowell EM, Hutchins HL, Sears B (2007) Effects of an open-label pilot study with high-dose EPA/DHA concentrates on plasma phospholipids and behavior in children with attention deficit hyperactivity disorder. Nutr J 6:16

    Article  PubMed  Google Scholar 

  51. Chen CT, Liu Z, Bazinet RP (in press) Rapid de-esterification and loss of eicosapentaenoic acid from rat brain phospholipids: an intracerebroventricular study. J Neurochem. doi:10.1111/j.1471-4159.2010.07116.x

  52. Samadi P, Gregoire C, Rouillard C, Bedard PJ, Di Paolo T, Levesque D (2006) Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine monkeys. Ann Neurol 59:282–288

    Article  CAS  PubMed  Google Scholar 

  53. Naidu P, Kulkarni SK (2001) Possible involvement of prostaglandins in haloperidol-induced orofacial dyskinesia in rats. Eur J Pharmacol 430:295–298

    Article  CAS  PubMed  Google Scholar 

  54. Ono N, Abiru T, Sugiyama K, Kamiya H (1992) Influence of cyclooxygenase inhibitors on the cataleptic behaviour induced by haloperidol in mice. Prostaglandins Leukot Essent Fatty Acids 46:59–63

    Article  CAS  PubMed  Google Scholar 

  55. Barcelos RCS, Benvegnú DM, Boufleur N, Reckziegel P, Müller LG, Pase CS, Bürger ME (2010) Effects of n-3 essential fatty acids (n-3 EFA) on motor disorders and memory dysfunction typical neuroleptic-induced: behavioral and biochemical parameter. Neurotox Res 17:228–237

    Article  CAS  PubMed  Google Scholar 

  56. Mills SC, Windsor AC, Knight SC (2005) The potential interactions between polyunsaturated fatty and colonic inflammatory processes. Clin Exp Immunol 142:216–228

    Article  CAS  PubMed  Google Scholar 

  57. Wu A, Ying Z, Gomez-Pinilha F (2004) Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma 21:1457–1467

    Article  PubMed  Google Scholar 

  58. Nemets B, Stahl Z, Belmaker RH (2002) Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorder. Am J Psychiatry 159(3):477–479

    Article  PubMed  Google Scholar 

  59. Robinson PJ, Noronha J, DeGeorge JJ, Freed LM, Nariai T, Rapoport SI (1992) A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res 17:187–214

    Article  CAS  Google Scholar 

  60. DeMar JC Jr, Ma K, Bell JM, Rapoport SI (2004) Half-lives of docosahexahenoic acid in rat brain phospholipids are prolonged by 15 weeks of nutritional deprivation of n-3 polyunsaturated fatty acids. J Neurochem 91:1125–1137

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilise Escobar Bürger.

About this article

Cite this article

Barcelos, R.C.S., Benvegnú, D.M., Boufleur, N. et al. Short Term Dietary Fish Oil Supplementation Improves Motor Deficiencies Related to Reserpine-Induced Parkinsonism in Rats. Lipids 46, 143–149 (2011). https://doi.org/10.1007/s11745-010-3514-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3514-0

Keywords

Navigation