Skip to main content

Advertisement

Log in

The Onset of Brain Injury and Neurodegeneration Triggers the Synthesis of Docosanoid Neuroprotective Signaling

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Bioactive lipid messengers are formed through phospholipase-mediated cleavage of specific phospholipids from membrane reservoirs. Effectors that activate the synthesis of lipid messengers, include ion channels, neurotransmitters, membrane depolarization, cytokines, and neurotrophic factors. In turn, lipid messengers regulate and interact with multiple pathways, participating in the development, differentiation, function (e.g., long-term potentiation and memory), protection, and repair of cells of the nervous system. Overall, bioactive lipids participate in the regulation of synaptic function and dysfunction. Platelet-activating factor (PAF) and COX-2-synthesized PGE2 modulate synaptic plasticity and memory. Oxidative stress disrupts lipid signaling, fosters lipid peroxidation, and initiates and propagates neurodegeneration. Lipid messengers participate in the interactions among neurons, astrocytes, oligodendrocytes, microglia, cells of the microvasculature, and other cells. A conglomerate of interrelated cells comprises the neurovascular unit. Signaling at the neurovascular unit is clearly altered in the early stages of cerebrovascular disease as well as in neurodegenerations. Here we will provide examples of how signaling by lipids regulates critical events essential for neuronal survival. We will highlight a newly identified, DHA-derived messenger, neuroprotectin D1, which attenuates oxidative stress-induced apoptosis. The specificity and potency of this novel docosanoid (neuroprotectin D1) indicate a potentially important target for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  • Anderson, R. E., Maude, M. B., and Bok, D. (2001). Low docosahexaenoic acid levels in rod outer segment membranes of mice with rds/peripherin and P216L peripherin mutations. Invest. Ophthalmol. Vis. Sci. 42:1715–1720.

    PubMed  CAS  Google Scholar 

  • Anderson, R. E., Maude, M. B., McClellan, M., Matthes, M. T., Yasumura, D., and La Vail, M. M. (2002). Low docosahexaenoic acid levels in rod outer segments of rats with P23H and S334ter rhodopsin mutations. Mol. Vis. 8:351–358.

    PubMed  CAS  Google Scholar 

  • Anthonsen, M. W., Solhaug, A., and Johansen, B. (2001). Functional coupling between secretory and cytosolic phospholipase A2 modulates tumor necrosis factor-alpha- and interleukin-1beta-induced NF-kappa B activation. J. Biol. Chem. 276:30527–30536.

    Article  PubMed  CAS  Google Scholar 

  • Barone, F. C., and Feuerstein, G. Z. (1999). Inflammatory mediators and stroke: new opportunities for novel therapeutics. J. Cereb. Blood Flow Metab. 19:819–834.

    Article  PubMed  CAS  Google Scholar 

  • Basu, A., Krady, J. K., and Levison, S. W. (2004). Interleukin-1: a master regulator of neuroinflammation. J. Neurosci. Res. 78:151–156.

    Article  PubMed  CAS  Google Scholar 

  • Bazan, N. G. (1990). Supply of n-3 polyunsaturated fatty acids and their significance in the central nervous system. In Wurtman R. J., and Wurtman J. J. (eds.), Nutrition and the Brain, Raven, New York, pp. 1–24.

    Google Scholar 

  • Bazan, N. G. (2003). Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J. Lipid Res. 44:2221–2233.

    Article  PubMed  CAS  Google Scholar 

  • Bazan, N. G., Colangelo, V., and Lukiw, W. J. (2002). Prostaglandins and other lipid mediators in Alzheimer's disease. Prostaglandins Other Lipid Mediat. 68–69:197–210.

    Article  PubMed  CAS  Google Scholar 

  • Bazan, N. G., Reddy, T. S., Redmond, T. M., Wiggert, B., and Chader, G. J. (1985). Endogenous fatty acids are covalently and noncovalently bound to interphotoreceptor retinoid-binding protein in the monkey retina. J. Biol. Chem. 260:13677–13680.

    PubMed  CAS  Google Scholar 

  • Belayev, L., Marcheselli, V. L., Khoutorova, L., Rodriguez de Turco, E. B., Busto, R., Ginsberg, M. D., and Bazan, N. G. (2005). Docosahexaenoic acid complexed to albumin elicits high-grade ischemic neuroprotection. Stroke 36:118–123.

    Article  PubMed  CAS  Google Scholar 

  • Bethea, J. R., and Dietrich, W. D. (2002). Targeting the host inflammatory response in traumatic spinal cord injury. Curr. Opin. Neurol. 15:355–360.

    Article  PubMed  Google Scholar 

  • Bramlett, H. M., and Dietrich, W. D. (2004). Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J. Cereb. Blood Flow Metab. 24:133–150.

    Article  PubMed  Google Scholar 

  • Bicknell, I. R., Darrow, R., Barsalou, L., Fliesler, S. J., and Organisciak, D. T. (2002). Alterations in retinal rod outer segment fatty acids and light-damage susceptibility in P23H rats. Mol. Vis. 8:333–340.

    PubMed  CAS  Google Scholar 

  • Billman, G. E., Kang, J. X., and Leaf, A. (1999). Prevention of sudden cardiac death by dietary pure omega-3 polyunsaturated fatty acids in dogs. Circulation 99:2452–2457.

    PubMed  CAS  Google Scholar 

  • Bryckaert, M., Guillonneau, X., Hecquet, C., Courtois, Y., and Mascarelli, F. (1999). Both FGF1 and bcl-x synthesis are necessary for the reduction of apoptosis in retinal pigmented epithelial cells by FGF2: role of the extracellular signal-regulated kinase 2. Oncogene 18:7584– 7593.

    Article  PubMed  CAS  Google Scholar 

  • Calder, P. C., and Grimble, R. F. (2002). Polyunsaturated fatty acids, inflammation and immunity. Eur. J. Clin. Nutr. 56(Suppl 3):S14–S19.

    Article  PubMed  CAS  Google Scholar 

  • Capper, E. A., and Marshall, L. A. (2001). Mammalian phospholipases A(2): mediators of inflammation, proliferation and apoptosis. Prog. Lipid Res. 40:167–197.

    Article  PubMed  CAS  Google Scholar 

  • Catz, S. D., and Johnson, J. L. (2001). Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 20:7342–7351.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Houghton, L. A., Brenna, J. T., and Noy, N. (1996). Docosahexaenoic acid modulates the interactions of the interphotoreceptor retinoid-binding protein with 11-cis-retinal. J. Biol. Chem. 271:20507–20515.

    Article  PubMed  CAS  Google Scholar 

  • Choi, D. W., and Rothman, S. M. (1990). The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 13:171–182.

    Article  PubMed  CAS  Google Scholar 

  • Compton, M. M. (1992). A biochemical hallmark of apoptosis: internucleosomal degradation of the genome. Cancer Metastasis Rev. 11:105–119.

    Article  PubMed  CAS  Google Scholar 

  • Consilvio, C., Vincent, A. M., and Feldman, E. L. (2004). Neuroinflammation, COX-2, and ALS–a dual role? Exp. Neurol. 187:1–10.

    CAS  Google Scholar 

  • Creagh, E. M., Conroy, H., and Martin, S. J. (2003). Caspase-activation pathways in apoptosis and immunity. Immunol. Rev. 193:10–21.

    Article  PubMed  CAS  Google Scholar 

  • Danton, G. H. and Dietrich, W. D. (2003). Inflammatory mechanisms after ischemia and stroke. J. Neuropathol. Exp. Neurol. 62:127–136.

    PubMed  CAS  Google Scholar 

  • de Caldironi, M. I., and Bazan, N. G. (1977). Acyl groups, molecular species, and labeling by 14C-glycerol and 3H-arachidonic acid of vertebrate retina glycerolipids. Adv. Exp. Med. Biol. 83:397–404.

    PubMed  CAS  Google Scholar 

  • Dirnagl, U., Simon, R. P., and Hallenbeck, J. M. (2003). Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 26:248–254.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, E. P., Stephenson, D. T., Clemens, J. A., and Little, S. P. (1997). Bcl-Xshort is elevated following severe global ischemia in rat brains. Brain Res. 776:222–229.

    Article  PubMed  CAS  Google Scholar 

  • Dykens, J. A. (1994). Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: implications for neurodegeneration. J. Neurochem. 63:584–591.

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg, M. D. (2003). Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis Lecture. Stroke 34:214–223.

    Article  PubMed  Google Scholar 

  • Glasgow, J. N., Qiu, J., and Rassin, D. (2001). Transcriptional regulation of the BCL-X gene by NF-kappaB is an element of hypoxic responses in the rat brain. Neurochem. Res. 26:647–659.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, W. C., Rodriguez de Turco, E. B., and Bazan, N. G. (1992). Retinal pigment epithelial cells play a central role in the conservation of docosahexaenoic acid by photoreceptor cells after shedding and phagocytosis. Curr. Eye Res. 11:73–83.

    PubMed  CAS  Google Scholar 

  • Grimminger, F., Grimm, H., Fuhrer, D., Papavassilis, C., Lindemann, G., Blecher, C., Mayer, K., Tabesch, F., Kramer, H. J., Stevens, J., and Seeger, W. (1996). Omega-3 lipid infusion in a heart allotransplant model. Shift in fatty acid and lipid mediator profiles and prolongation of transplant survival. Circulation 93:365–371.

    PubMed  CAS  Google Scholar 

  • Halliwell, B. (1991). Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am. J. Med. 91:14S–22S.

    Article  PubMed  CAS  Google Scholar 

  • Halterman, M. W., Miller, C. C., and Federoff, H. J. (1999). Hypoxia-inducible factor-1alpha mediates hypoxia-induced delayed neuronal death that involves p53. J. Neurosci. 19:6818–6824.

    PubMed  CAS  Google Scholar 

  • Hibbeln, J. R. (1998). Fish consumption and major depression. Lancet 351:1213.

    Article  PubMed  CAS  Google Scholar 

  • Hong, S., Gronert, K., Devchand, P. R., Moussignac, R. L., and Serhan, C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J. Biol. Chem. 278:14677–14687.

    Article  PubMed  CAS  Google Scholar 

  • Horrocks, L. A., and Farooqui, A. A. (1994). NMDA receptor-stimulated release of arachidonic acid: Mechanisms for the Bazan effect. In Municio, A. M., and Miras-Portugal, M. T. (eds.), Cell Signal Transduction, Second Messengers, and Protein Phosphorylation in Health and Disease, Plenum Press, New York, pp. 113–128.

  • Hoy, A., Leininger-Muller, B., Poirier, O., Siest, G., Gautier, M., Elbaz, A., Amarenco, P., and Visvikis, S. (2003). Myeloperoxidase polymorphisms in brain infarction. Association with infarct size and functional outcome. Atherosclerosis 167:223–230.

    Article  PubMed  CAS  Google Scholar 

  • Hu, J., and Bok, D. (2001). A cell culture medium that supports the differentiation of human retinal pigment epithelium into functionally polarized monolayers. Mol. Vis. 7:14–19.

    PubMed  CAS  Google Scholar 

  • Iadecola, C. (2004). Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5:347–360.

    Article  PubMed  CAS  Google Scholar 

  • Iigo, M., Nakagawa, T., Ishikawa, C., Iwahori, Y., Asamoto, M., Yazawa, K., Araki, E., and Tsuda, H. (1997). Inhibitory effects of docosahexaenoic acid on colon carcinoma 26 metastasis to the lung. Br. J. Cancer 75:650–655.

    PubMed  CAS  Google Scholar 

  • James, M. J., Gibson, R. A., and Cleland, L. G. (2000). Dietary polyunsaturated fatty acids and inflammatory mediator production. Am. J. Clin. Nutr. 71:343S–348S.

    PubMed  CAS  Google Scholar 

  • Jesberger, J. A., and Richardson, J. S. (1991). Oxygen free radicals and brain dysfunction. Int. J. Neurosci. 57:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Kerschensteiner, M., Gallmeier, E., Behrens, L., Leal, V. V., Misgeld, T., Klinkert, W. E., Kolbeck, R., Hoppe, E., Oropeza-Wekerle, R. L., Bartke, I., Stadelmann, C., Lassmann, H., Wekerle, H., and Hohlfeld, R. (1999). Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J. Exp. Med. 189:865–870.

    Article  CAS  Google Scholar 

  • Kim, H. Y., Akbar, M., Lau, A., and Edsall, L. (2000). Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J. Biol. Chem. 275:35215–35223.

    Article  PubMed  CAS  Google Scholar 

  • Kowaltowski, A. J., Castilho, R. F., and Vercesi, A. E. (1995). Ca(2+)-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state. Am. J. Physiol. 269:C141–C147.

    PubMed  CAS  Google Scholar 

  • Litman, B. J., Niu, S. L., Polozova, A., and Mitchell, D. C. (2001). The role of docosahexaenoic acid containing phospholipids in modulating G protein-coupled signaling pathways: visual transduction. J. Mol. Neurosci. 16:237–242.

    Article  PubMed  CAS  Google Scholar 

  • Lo, E. H., Dalkara, T., and Moskowitz, M. A. (2003). Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci. 4:399–415.

    Article  PubMed  CAS  Google Scholar 

  • McLennan, P., Howe, P., Abeywardena, M., Muggli, R., Raederstorff, D., Mano, M., Rayner, T., and Head, R. (1996). The cardiovascular protective role of docosahexaenoic acid. Eur. J. Pharmacol. 300:83–89.

    Article  PubMed  CAS  Google Scholar 

  • Marcheselli, V. L., Hong, S., Lukiw, W. J., Tian, X. H., Gronert, K., Musto, A., Hardy, M., Gimenez, J. M., Chiang, N., Serhan, C. N., and Bazan, N. G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 278:43807–43817.

    Article  PubMed  CAS  Google Scholar 

  • Marchioli, R. (1999). Results of GISSI Prevenzione: diet, drugs, and cardiovascular risk. Researchers of GISSI Prevenzione. Cardiologia 44(Suppl 1):745–746.

    PubMed  Google Scholar 

  • Mattson, M. P. (1998). Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci. 21:53–57.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P. (2000). Apoptotic and anti-apoptotic synaptic signaling mechanisms. Brain Pathol. 10:300–312.

    Article  PubMed  CAS  Google Scholar 

  • Minghetti, L. (2004). Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 63:901–910.

    PubMed  CAS  Google Scholar 

  • Mukherjee, P. K., Marcheselli, V. L., and Serhan, C. N. (2004). Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl. Acad. Sci. USA 101:8491–8496.

    Article  PubMed  CAS  Google Scholar 

  • Organisciak, D. T., Darrow, R. M., Jiang, Y. L., and Blanks, J. C. (1996). Retinal light damage in rats with altered levels of rod outer segment docosahexaenoate. Invest. Ophthalmol. Vis. Sci. 37:2243–2257.

    PubMed  CAS  Google Scholar 

  • Rapp, J. H., Connor, W. E., Lin, D. S., and Porter, J. M. (1991). Dietary eicosapentaenoic acid and docosahexaenoic acid from fish oil. Their incorporation into advanced human atherosclerotic plaques. Arterioscler. Thromb. 11:903–911.

    PubMed  CAS  Google Scholar 

  • Remmers, M., Schmidt-Kastner, R., Belayev, L., Lin, B., Busto, R., and Ginsberg, M. D. (1999). Protein extravasation and cellular uptake after high-dose human-albumin treatment of transient focal cerebral ischemia in rats. Brain Res. 827:237–242.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, L. J., Montine, T. J., Markesbery, T. R., et al. (1998). Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 273:13605–13612.

    Article  PubMed  CAS  Google Scholar 

  • Salem, N., Jr., Kim, H. Y., and Yergey, J. A. (1986). The Health Effects of Polyunsaturated Fatty Acids in Seafoods, Academic, New York, pp. 263–317.

    Google Scholar 

  • Seeberg, E., Eide, L., and Bjoras, M. (1995). The base excision repair pathway. Trends Biochem. Sci. 20:391–397.

    Article  PubMed  CAS  Google Scholar 

  • Sieving, P. A., Chaudhry, P., Kondo, M., Provenzano, M., Wu, D., Carlson, T. J., Bush, R. A., and Thompson, D. A. (2001). Inhibition of the visual cycle in vivo by 13-cis retinoic acid protects from light damage and provides a mechanism for night blindness in isotretinoin therapy. Proc. Natl. Acad. Sci. USA 98:1835–1840.

    Article  PubMed  CAS  Google Scholar 

  • Sparrow, J. R., Vollmer-Snarr, H. R., Zhou, J., Jang, Y. P., Jockusch, S., Itagaki, Y., and Nakanishi, K. (2003). A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J. Biol. Chem. 278:18207–18213.

    Article  PubMed  CAS  Google Scholar 

  • Stephensen, C. B. (2004). Fish oil and inflammatory disease: is asthma the next target for n-3 fatty acid supplements? Nutr. Rev. 62:486–489.

    Article  PubMed  Google Scholar 

  • Stinson, A. M., Wiegand, R. D., and Anderson, R. E. (1991). Recycling of docosahexaenoic acid in rat retinas during n-3 fatty acid deficiency. J. Lipid Res. 32:2009–2017.

    PubMed  CAS  Google Scholar 

  • Sugawara, T., Fujimura, M., Noshita, N., Kim, G. W., Saito, A., Hayashi, T., Narasimhan, P., Maier, C. M., and Chan, P. H. (2004). Neuronal Death/Survival Signaling Pathways in Cerebral Ischemia. Neurorx 1:17–25.

    Article  PubMed  Google Scholar 

  • Sun, G. Y., Xu, J., Jensen, M. D., and Simonyi, A. (2004). Phospholipase A2 in the central nervous: Implications for neurodegenerative diseases. J. Lipid Res. 45:205–213.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, T. G., Benolken, R. M., and Anderson, R. E. (1975). Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. Science 188:1312–1314.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas G. Bazan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazan, N.G. The Onset of Brain Injury and Neurodegeneration Triggers the Synthesis of Docosanoid Neuroprotective Signaling. Cell Mol Neurobiol 26, 899–911 (2006). https://doi.org/10.1007/s10571-006-9064-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9064-6

KEY WORDS:

Navigation