Skip to main content
Log in

Effects of ω-3 Essential Fatty Acids (ω-3 EFAs) on Motor Disorders and Memory Dysfunction Typical Neuroleptic-induced: Behavioral and Biochemical Parameter

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The effects of fish oil supplementation on motor disorders, memory dysfunction, and lipid peroxidation (LP) induced by typical neuroleptics were studied. Wistar rats received a suspension prepared with fish oil containing ω-3 fatty acids, water, and Tween 80 (1%) in the place of drinking water (FO group) or vehicle (C group) for 8 weeks. After 4 weeks of treatment, half of the animals of both groups were treated with haloperidol (H and FO + H groups; experiment 1), fluphenazine (F and FO + F groups; experiment 2), or vehicle (C group), administered once a week (12 mg/kg/im) for 4 weeks, maintaining the treatment with FO. Extrapyramidal motor disorders by haloperidol and fluphenazine were observed by an increase in vacuous chewing movements and catalepsy (P < 0.05). These effects were reduced by FO treatment (P < 0.05). Both neuroleptics displayed impairment in memory retention observed by latency time to find the original location of platform in water-maze task, after 4 days of training performed in the last treatment week. This effect was reduced by FO (P < 0.05) to both haloperidol and fluphenazine treatments. Haloperidol increased the LP in plasma and hippocampus, and these effects were decreased by FO treatment (P < 0.05). Fluphenazine increased the LP in plasma and substantia nigra, which were completely decreased by FO treatment (P < 0.05). The FO decreased the motor disorders, memory dysfunction, and oxidative damage typical neuroleptic-induced. Our results indicate that FO exhibits a neuroprotector role useful on diseases related to oxidative damages, and may be considered in the prevention of motor and memory side effects induced by the antipsychotic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abilio VC, Araujo CCS, Bergamo M, Calvente PRV, D’Almeida V, Ribeiro RA, Frussa-Filho R (2003) Vitamin E attenuates reserpine-induced oral dyskinesia and striatal oxidized glutathione/reduced glutathione ratio (GSSG/GSH) enhancement in rats. Prog Neuropsychopharmacol Biol Psychiatry 27:109–114

    Article  CAS  PubMed  Google Scholar 

  • Andreassen OA, Jorgensen HA (2000) Neurotoxicity associated with neuroleptic-induced oral dyskinesia in rats. Implications for tardive dyskinesia? Prog Neurobiol 61:525–541

    Article  CAS  PubMed  Google Scholar 

  • Andreassen OA, Ferrante RJ, Aamo TO, Beal MF, Jorgensen HA (2003) Oral dyskinesia and histopathological alterations in substantia nigra after long-term haloperidol treatment of old rats. Neuroscience 122:717–725

    Article  CAS  PubMed  Google Scholar 

  • Bas O, Songur A, Sahin O, Mollaoglu H, Ozen OA, Yaman M, Eser O, Fidan H, Yahmurca M (2007) The protective effect of fish n-3 fatty acids on cerebral ischemia in rat hippocampus. Neurochem Int 50:548–554

    Article  CAS  PubMed  Google Scholar 

  • Bazan NG (2006) The onset of brain injury and neurodegeneration triggers the synthesis of docosanoid neuroprotective signaling. Cell Mol Neurobiol 26:899–911

    Article  Google Scholar 

  • Bazan NG (2007) Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Clin Nutr Metab Care 10:136–141

    Article  CAS  Google Scholar 

  • Benninger RJ (1983) The role of dopamine in locomotor-activity and learning. Brain Res Rev 6:173–196

    Article  Google Scholar 

  • Benninger RJ, Miller R (1998) Dopamine D1-like receptor and reward-related incentive learning. Neurosci Biobehav Rev 22:335–345

    Article  Google Scholar 

  • Black KL, Hoff JT, Radins NS, Deshmukh GD (1984) Eicosapentaenoic acid: effect on brain prostaglandins, cerebral blood flow and edema in ischemic gerbils. Stroke 15:65–69

    CAS  PubMed  Google Scholar 

  • Bürger ME, Fachinetto R, Alves A, Callegari L, Rocha JBT (2005a) Acute reserpine and subchronic haloperidol treatments change synaptosomal brain glutamate uptake and elicit orofacial dyskinesia in rats. Brain Res 1031:202–210

    Article  PubMed  Google Scholar 

  • Bürger ME, Fachinetto R, Zeni G, Rocha JBT (2005b) Ebselen attenuates haloperidol-induced orofacial dyskinesia and oxidative stress in rat brain. Pharmacol Biochem Behav 81:608–615

    Article  PubMed  Google Scholar 

  • Cadet JL, Lohr JB, Jeste DV (1986) Free radical and tardive dyskinesia. Trends Neurosci 9:107–108

    Article  CAS  Google Scholar 

  • Cadet JL, Lohr JB, Jeste DV (1987) Tardive dyskinesia and schizophrenie burnout the possible involvement of cytotoxic free radicals. In: Henn FA, DeLisi LE (eds) Handbook of schizophrenia: the neurochemistry and pharmacology of schizophrenia. Elsevier, Amsterdam, pp 425–438

    Google Scholar 

  • Casey DE (1995) Motor and mental aspects of extrapyramidal syndromes. Int Clin Psychopharmacol 10:105–114

    Article  PubMed  Google Scholar 

  • Choin-Kwon S, Park KA, Lee HJ, Park MS, Lee JH, Jeon SE, Choe SE, Choe MA, Park KC (2004) Temporal changes in cerebral antioxidant enzyme activities ischemia and reperfusion in a rat focal brain ischemia model: effect of dietary fish oil. Brain Res Dev Brain Res 152:11–18

    Article  Google Scholar 

  • Clandinin MT, Jumpsen J, Suh M (1994) Relationship between fatty acid accretion, membrane composition, and biologic functions. J Pediatr 125(suppl):S25–S32

    CAS  PubMed  Google Scholar 

  • Colpo G, Trevisol F, Teixeira AM, Fachinetto R, Pereira RP, Athayde ML, Rocha JBT, Bürger ME (2007) Ilex paraguariensis has antioxidant and attenuates haloperidol-induced orofacial dyskinesia and memory dysfunction in rats. Neurotox Res 12:1–10

    Article  Google Scholar 

  • Connor WE, Neuringer M, Reisbick S (1991) Essentiality of ω3 fatty acids: evidence from the primate model and implications for human nutrition. World Rev Nutr Diet 66:118–132

    CAS  PubMed  Google Scholar 

  • Coyle JT, Putfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  CAS  PubMed  Google Scholar 

  • Creese I, Burt D, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 193:481–483

    Article  Google Scholar 

  • Emsley R, Niehaus DJH, Koen L, Oosthuizen PP, Turner HJ, Carey P, Van Rensburg SJ, Maritz JS, Murch H (2006) The effects of eicosapentaenoic acid in tardive dyskinesia: a randomized, placebo-controlled trial. Schizophr Res 84:112–120

    Article  PubMed  Google Scholar 

  • Evans DR, Parikh VV, Khan MM, Coussons C, Buckley PF, Mahadik SP (2003) Red blood cell membrane essential fatty acid metabolism in early psychotic patients following antipsychotic drug treatment. Prostaglandins Leukot Essent Fatty Acids 69:393–399

    Article  CAS  PubMed  Google Scholar 

  • Fachinetto R, Villarinho JG, Wagner C, Pereira RP, Ávila DS, Bürger ME, Calixto JB, Rocha JBT, Ferreira J (2007) Valeriana officinalis does not alter the orofacial dyskinesia induced by haloperidol in rats: role of dopamine transporter. Prog Neuropsychopharmacol Biol Psychiatry 31:1478–1486

    Article  CAS  PubMed  Google Scholar 

  • Haag M (2003) Essential fatty acids and the brain. Can J Psychiatr 48:195–203

    Google Scholar 

  • Halliwel B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Hossain S, Hashimoto M, Gamoh S, Masumura S (1999) Antioxidative effects of docosahexaenoic acid in the cerebrum versus cerebellum an Brainstem of aged hypercholesterolemic rats. J Neurochem 72:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo I, Izquierdo LA, Barros DM, de Souza MM, Quevedo J, Rodrigues C, Sant’anna MK, Madruga M, Medina JH (1998) Differential involvement of cortical receptor mechanisms in working, short-term and long-term memory. Behav Phamacol 9:421–427

    Article  CAS  Google Scholar 

  • Jenkins RR, Goldfarb A (1993) Introduction—oxidant stress, aging, and exercise. Med Sci Sports Exerc 25:210–212

    CAS  PubMed  Google Scholar 

  • Jump DB (2002) Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr Opin Lipidol 13:155–164

    Article  CAS  PubMed  Google Scholar 

  • Kane JM, Smith JM (1982) Tardive dyskinesia: prevalence and risk factors. Arch Gen Psychiatry 39:473–481

    CAS  PubMed  Google Scholar 

  • Konitsiotis S, Tsironis C, Kiostsis DN, Evangelou A (2006) Effects of N-methyl-D-aspartate receptor antagonism on neuroleptic-induced orofacial dyskinesia. Psychopharmacology 185:369–377

    Article  CAS  PubMed  Google Scholar 

  • Levin ED, Gunne LM (1989) Chronic neuroleptic effects on spatial reversal-learning in monkeys. Psychopharmacology 97:496–500

    Article  CAS  PubMed  Google Scholar 

  • Lohr JB (1991) Oxygen radicals and neuropsychiatric illness: some speculations. Arch Gen Psychiatry 48:1097–1106

    CAS  PubMed  Google Scholar 

  • Marchese G, Casu MA, Bartholini F, Ruiu S, Saba P, Gessa GL, Pani L (2002) Sub-chronic treatment with classical but not atypical produces morphological changes in rat nigro-striatal dopaminergic neurons directly related to ‘early onset’ vacuous chewing. Eur J Neurosci 15:1187–1196

    Article  PubMed  Google Scholar 

  • Matsunaga M, Ohtaki H, Takaki A, Iwai Y, Yin L, Mizuguchi H, Miyake T, Usumi K, Shioda S (2003) Nucleoprotamine diet derived from salmon soft roe protects mouse hippocampal neurons from delayed cell death after transient forebrain ischemia. Neurosci Res 47:269–276

    Article  CAS  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  CAS  PubMed  Google Scholar 

  • Murphy HS, Ward PA (2005) Inflammation. In: Rubin E, Gorstein F, Rubin R, Schwartinng R, Strayer D (eds) Pathology: clinicopathologic foundations of medicine, 4th edn. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Naidu PS, Singh A, Kulkami SK (2003) Quercetin, a bioflavonoid attenuates haloperidol-induced orofacial dyskinesia. Neuropharmacology 44:1100–1106

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Ozyurt B, Sarsilmaz M, Akpolat N, Ozyurt H, Akyol O, Herken H, Kus I (2007) The protective effects of omega-3 fatty acids against MK-801-induced neurotoxicity in prefrontal cortex of rat. Neurochem Int 50:196–202

    Article  CAS  PubMed  Google Scholar 

  • Parikh V, Khan MM, Mahadik SP (2003) Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res 37:43–51

    Article  PubMed  Google Scholar 

  • Peet M, Laugharne J, Rangarajan N, Reynolds GP (1993) Tardive dyskinesia, lipid-dyskinesia, and sustained amelioration with vitamin-E treatment. Int Clin Psychopharmacol 8:151–153

    Article  CAS  PubMed  Google Scholar 

  • Perry G, Honda K, Liu Q, Aliev G, Siedlak SL, Harris PLR, Zhu X, Smith MA (2004) Stress and homeostatic regulation of oxidative damage in neurodegenerative disease. Free Radic Biol Med 36:59

    Google Scholar 

  • Pillai A, Terry AV Jr, Mahadik SP (2006) Differential effects of long-term treatment with typical and atypical antipsychotics on NGF and BDNF levels in rat striatum and hippocampus. Schizophr Res 82:95–106

    Article  PubMed  Google Scholar 

  • Pillai A, Parikh V, Terry AV Jr, Mahadik SP (2007) Long-term antipsychotic treatment and crossover studies in rats: differential effects of typical and atypical agents on the expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res 41:372–386

    Article  PubMed  Google Scholar 

  • Ploeger GE, Spruyt BM, Cools AR (1992) Effects of haloperidol on the acquisition of a spatial-learning task. Physiol Behav 52:979–983

    Article  CAS  PubMed  Google Scholar 

  • Ploeger GE, Spruyt BM, Cools AR (1994) Spatial localization in the Morris water maze in rats—acquisition is affected by intraaccumbens injections of the dopaminergic antagonist haloperidol. Behav Neurosci 108:927–934

    Article  CAS  PubMed  Google Scholar 

  • Polydoro M, Schroder N, Lima MNM, Caldana F, Laranja DC, Bromberg E, Roesler R, Quevedo J, Moreira JCF, Dal-Pizzol F (2004) Haloperidol- and clozapine-induced oxidative stress in the rat brain. Pharmacol Biochem Behav 78:751–756

    Article  CAS  PubMed  Google Scholar 

  • Rocha JBT, Santos JET, Rocha LK, Kleinpaul ER (1997) Undernutrition during suckling changes the sensitivity to haloperidol and chlorpromazine in two behavioural measures in weaning rats. Pharmacol Toxicol 80:114–123

    Article  Google Scholar 

  • Rogoza RM, Fairfax DF, Henry P, N-Marandi S, Khan RF, Gupta SK, Mishra RK (2004) Electron spin resonance spectroscopy reveals alpha-phenyl-N-tert-butylnitrone spin-traps free radicals in rat striatum and prevents haloperidol-induced vacuous chewing movements in the rat model of human tardive dyskinesia. Synapse 54:156–163

    Article  CAS  PubMed  Google Scholar 

  • Rosengarten H, Quartermain D (2002) The effect of chronic treatment with typical and atypical antipsychotics on working memory and jaw movements in three- and eighteen-month-old rats. Prog Neuropsychopharmacol Biol Psychiatry 26:1047–1054

    Article  CAS  PubMed  Google Scholar 

  • Saeedi H, Remington G, Christensen BK (2006) Impact of haloperidol, a dopamine D2 antagonist on cognition and mood. Schizophr Res 85:222–231

    Article  PubMed  Google Scholar 

  • Sarsilmaz M, Songur A, Kus I, Ozyurt B, Gulec M, Songut S, Ilhan A, Akyol O (2003a) The regulatory role of dietary omega-3 essential fatty acids on oxidant/antioxidant balance in rat hippocampus. Neurosci Res Commun 33:114–123

    Article  Google Scholar 

  • Sarsilmaz M, Songur A, Ozyurt H, Kus I, Ozen OA, Ozyurt B, Sogut S, Akyol O (2003b) Potential role of dietary ϖ-3 essential fatty acids on some oxidant/antioxidant parameters in rat’s corpus striatum. Prostaglandins Leukot Essent Fatty Acids 69:253–259

    Article  CAS  PubMed  Google Scholar 

  • Shamir E, Barak Y, Shalman I, Landon M, Zisapel N, Tarrasch R, Elizur A, Weinzman R (2001) Melatonin treatment for tardive dyskinesia—a double-blind, placebo-controlled, crossover study. Arch Gen Psychiatry 58:1049–1052

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos AP (1999) Essential fatty acids in health and chronic disease. Am J Clin Nutr 70:560S–569S

    CAS  PubMed  Google Scholar 

  • Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21:495–505

    CAS  PubMed  Google Scholar 

  • Songur A, Sarsilmaz M, Sogut S, Ozyurt B, Ozyurt H, Zararsiz I, Turkoglu AO (2004) Hypothalamic superoxide dismutase, xanthine oxidase, nitric oxide, and malondialdehyde in rats fed with ω-3 fatty acids. Prog Neuropsychopharmacol Biol Psychiatry 28:693–698

    Article  CAS  PubMed  Google Scholar 

  • Terry AV Jr, Parikh V, Gearhart DA, Pillai A, Hohanadel E, Warner S, NasrallahH HA, Mahadik SP (2006) Time dependent effects of haloperidol and ziprasidone on nerve growth factor, cholinergic neurons, and spatial learning in rats. J Pharmacol Exp Ther 318:709–724

    Article  CAS  PubMed  Google Scholar 

  • Terry AV Jr, Gearhart DA, Warner S, Hohnadel EJ, Middlemore ML, Zhang G, Bartlett MG, Mahadik SP (2007a) Protracted effects of chronic oral haloperidol and risperidone on nerve growth factor, cholinergic neurons, and spatial reference learning in rats. Neuroscience 150:413–424

    Article  CAS  PubMed  Google Scholar 

  • Terry AV Jr, Gearhart DA, Warner SE, Zhang G, Bartlett MG, Middlemore ML, Beck WD Jr, Mahadik SP, Waller JL (2007b) Oral haloperidol or risperidone treatment in rats: temporal effects on nerve growth factor receptors, cholinergic neurons, and memory performance. Neuroscience 146:1316–1332

    Article  CAS  PubMed  Google Scholar 

  • Wainwright PE (2002) Dietary essential fatty acids and brain function: a development perspective on mechanisms. Proc Nutr Soc 61:61–69

    Article  CAS  PubMed  Google Scholar 

  • Wainwright PE, Xing HC, Mutsaers L, McCutcheon D, Kyle D (1997) Arachidonic acid offsets the effects on mouse brain and behavior of a diet with a low (n-6)/(n-3) ratio and very high levels of docosahexaenoic acid. J Nutr 127:183

    Google Scholar 

  • Yehuda S (1989) Behavioral effects of dietary fats. In: Chandra RK (ed) Health effects of fish and fish oils. ARTS, St. John’s, NF, Canada, pp 327–335

    Google Scholar 

  • Yehuda S, Carasso RL (1987) Effects of dietary fats on learning, pain threshold, thermoregulation and motor activity in rats: Interaction with the length of feeding period. Int J Neurosci 32:919–925

    Article  CAS  PubMed  Google Scholar 

  • Yehuda S, Rabinovitz S, Mostofsky DI (2005) Essential fatty acids and stress. In: Yehuda S, Mostofsky DI (eds) Nutrition, stress and medical disorders. Humana Press, Totowa, NJ, pp 99–100

    Google Scholar 

  • Zararsiz I, Kus I, Akpolat N, Songur A, Ogeturk M, Sarsilmaz M (2006) Protective effects of omega-3 essential fatty acids against formaldehyde-induced neuronal damage in prefrontal cortex os rats. Cell Biochem Funct 24:237–244

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilise Escobar Bürger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barcelos, R.C.S., Benvegnú, D.M., Boufleur, N. et al. Effects of ω-3 Essential Fatty Acids (ω-3 EFAs) on Motor Disorders and Memory Dysfunction Typical Neuroleptic-induced: Behavioral and Biochemical Parameter. Neurotox Res 17, 228–237 (2010). https://doi.org/10.1007/s12640-009-9095-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9095-0

Keywords

Navigation